Please use this identifier to cite or link to this item:
http://hdl.handle.net/20.500.12279/839
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | HAINE, Luc | - |
dc.date.accessioned | 2022-12-01T14:03:17Z | - |
dc.date.available | 2022-12-01T14:03:17Z | - |
dc.date.issued | 2020-08-12 | - |
dc.identifier.uri | http://hdl.handle.net/20.500.12279/839 | - |
dc.description.abstract | Syllabus of a course in differential geometry I taught to third year math/phys students for many years at UCLouvain. Chapters 1 and 2 introduce manifolds and vector fields. Chapter 3 treats exterior differential calculus and Stokes-Cartan formula, in the spirit of Vladimir Arnold, ref [1]. Chapter 4 introduces riemannian geometry based on Elie Cartan method of moving frames. | en_US |
dc.format | Docs | en_US |
dc.language.iso | fr | en_US |
dc.publisher | Syllabus collection 269126001, Diffusion universitaire Ciaco, Faculté des sciences UCLouvain | en_US |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | geometry | en_US |
dc.title | Introduction à la géométrie différentielle | en_US |
dc.type | FullCourse | en_US |
LOM.educational.typicalAgeRange | Bachelor | en_US |
LOM.educational.typicalLearningTime | Semester | en_US |
LOM.educational.language | fr | en_US |
Appears in Collections: | Mathematics |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Book_LMAT1342_20.pdf | Syllabus | 1.09 MB | Adobe PDF | ![]() View/Open |
This item is licensed under a Creative Commons License Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) |
![]() |