Please use this identifier to cite or link to this item: http://hdl.handle.net/20.500.12279/839
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHAINE, Luc-
dc.date.accessioned2022-12-01T14:03:17Z-
dc.date.available2022-12-01T14:03:17Z-
dc.date.issued2020-08-12-
dc.identifier.urihttp://hdl.handle.net/20.500.12279/839-
dc.description.abstractSyllabus of a course in differential geometry I taught to third year math/phys students for many years at UCLouvain. Chapters 1 and 2 introduce manifolds and vector fields. Chapter 3 treats exterior differential calculus and Stokes-Cartan formula, in the spirit of Vladimir Arnold, ref [1]. Chapter 4 introduces riemannian geometry based on Elie Cartan method of moving frames.en_US
dc.formatDocsen_US
dc.language.isofren_US
dc.publisherSyllabus collection 269126001, Diffusion universitaire Ciaco, Faculté des sciences UCLouvainen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectgeometryen_US
dc.titleIntroduction à la géométrie différentielleen_US
dc.typeFullCourseen_US
LOM.educational.typicalAgeRangeBacheloren_US
LOM.educational.typicalLearningTimeSemesteren_US
LOM.educational.languagefren_US
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
Book_LMAT1342_20.pdfSyllabus1.09 MBAdobe PDFThumbnail
View/Open