
SOFTWARE MAINTENANCE 
& EVOLUTION

LINGI2252 – PROF. KIM MENS

OBJECT-ORIENTED
APPLICATION FRAMEWORKS

LINGI2252 – PROF. KIM MENS

A. WHAT’S A FRAMEWORK?
LINGI2252 – PROF. KIM MENS

OBJECT-ORIENTED APPLICATION FRAMEWORKS

A SOFTWARE FRAMEWORK

A particular implementation technique for building families of
software applications.

A framework represents a common design and partial
implementation for the family:

A generic solution for a set of similar problems.

Incomplete by nature : application-specific functionality to be
filled in by the framework customiser, i.e. the developer of a
concrete application.

Variations are specified by means of so-called hot spots.

4

OBJECT-ORIENTED APPLICATION FRAMEWORKS

FRAMEWORKS ARE ABOUT SOFTWARE REUSE

Frameworks are meant to be reused.

Designing a framework is not easy:

A good framework should be easy to use and be flexibly
adapted to a wide range of requirements.

Identifying the right combination of hot spots is difficult.

Best achieved via an iterative development process.

Need at least 3 applications before turning it into a framework

5

OBJECT-ORIENTED APPLICATION FRAMEWORKS

OBJECT-ORIENTED APPLICATION FRAMEWORKS

An object-oriented (application) framework is

an object-oriented class hierarchy

plus a built-in model of interaction

which defines how objects derived from the class
hierarchy interact with one another.

Deriving a custom application from a framework is typically
done through class specialisation.

* [Lewis&al1995, p.vii] Ted Lewis et al. Object Oriented Application Frameworks, Manning Publications, 1995

6

*

OBJECT-ORIENTED APPLICATION FRAMEWORKS

OBJECT-ORIENTED APPLICATION FRAMEWORKS

Support reuse beyond the class level.

Core functionality implemented as set of abstract classes that cooperate
in a well-defined manner.

When deriving a concrete application :

these abstract classes are specialised by concrete subclasses;

other concrete classes are chosen from a library of standard
components provided by the framework developer.

Customisation is completed by adding new application-specific classes.

7

OBJECT-ORIENTED APPLICATION FRAMEWORKS

EXAMPLES OF FRAMEWORKS

GUI frameworks (e.g., JHotDraw)

Unit testing frameworks (e.g., JUnit)

Collection hierarchy (e.g., Smalltalk or Java)

A particular MVC implementation

Web application frameworks

WHATS'On, an application framework for television broadcast
management

YESPLAN, an application framework for event planning

8

https://sourceforge.net/projects/jhotdraw/
http://junit.org
http://www.mediagenix.tv/en/solution
http://yesplan.be

OBJECT-ORIENTED APPLICATION FRAMEWORKS

SOME DEFINITIONS OF FRAMEWORKS

[Ralph Johnson, OOPSLA 97] : “A reusable design of an application or
subsystem, represented by a set of abstract classes and the way objects in these
classes collaborate.”

[GoF p. 26] : “A set of co-operating classes that make up a reusable design for a
specific class of software.”

[Fayad et al. §1] : “The skeleton of an application that can be customised by an
application developer.”

[Fayad et al. §16] : “Defines a high-level language with which applications within
a domain are created through specialisation.”

[Van Gurp & Bosch] : “A partial design and implementation for an application in
a given domain.”

9

OBJECT-ORIENTED APPLICATION FRAMEWORKS

CENTRAL ASPECTS IN THESE DEFINITIONS

Domain / class of software : has a well defined domain where it provides
behaviour

Skeleton / design / high-level language : a common design shared by all
customisations

Collaborate / co-operating : a description of the behaviour at a high level
of abstraction, defining how classes participating in the framework
interact

Reusable / abstract classes / customised / specialisation : can be tailored
to a concrete context.

Classes / partial implementation: reuse of code as well as reuse of design

10

OBJECT-ORIENTED APPLICATION FRAMEWORKS

FRAMEWORK TYPES : APPLICABILITY

Domain frameworks capture expertise useful for one particular
problem domain :

financial engineering  
television broadcast management 
event planning

Application frameworks capture expertise common to a wide variety of
problems :

graphical user interface frameworks 
collection classes 
web application frameworks

11

OBJECT-ORIENTED APPLICATION FRAMEWORKS

WHY FRAMEWORKS?

Frameworks are one of the best bets on

Software Reuse

High-level design is the main intellectual content of software, and
frameworks are a way to reuse it…

Frameworks allow you to reuse both design and implementation

”Interface design and functional factoring constitutes the key
intellectual content of software and are far more difficult to create or
re-create than code.”

[Peter Deutsch]

12

OBJECT-ORIENTED APPLICATION FRAMEWORKS

THE DIFFERENT PARTS OF A FRAMEWORK-BASED APPLICATION

An application consists of

The framework code itself provided

e.g. JHotDraw

The framework specialisation code your job!

e.g. JHotDraw specialisation to handle musical notation

... and the rest your job!

drivers, utilities, application parts not handled by the framework....

e.g. code to handle musical semantics, playback, etc.

13

provided

your job!

your job!

OBJECT-ORIENTED APPLICATION FRAMEWORKS

FRAMEWORK DEVELOPMENT = ”PROGRAMMING WITH HOLES”

A framework is a partial application

Hole

Hole

Hole

The framework

14

Hole

Hole

Hole

OBJECT-ORIENTED APPLICATION FRAMEWORKS

FRAMEWORK DEVELOPMENT = ”PROGRAMMING WITH HOLES”

A framework is a partial application

Ken’s code

Your code

Jim’s code

Some more code

Your application

15

OBJECT-ORIENTED APPLICATION FRAMEWORKS

PRINCIPLE OF INVERSION OF CONTROL

a.k.a. the Hollywood principle:

“Don’t call us, we’ll call you”

This is what distinguishes a framework from a library

When using a library, the application calls the library, but
the library is not aware of the application.

When using a framework, the application-specific code
written by the programmer gets called by the framework.

16

OBJECT-ORIENTED APPLICATION FRAMEWORKS

PRINCIPLE OF INVERSION OF CONTROL

Frameworks are partial applications and thus (usually) define interaction
patterns. Thus they insist on defining the flow of control :

Class Library

Foo

Bar

Zork

Client

Framework

Foo

<<abstract>>

Bar
Zork

ClientBar
uses

ClientFoo

uses

Coordination happens in
application code

Coordination happens in 
the framework code

17

OBJECT-ORIENTED APPLICATION FRAMEWORKS

HOTSPOTS

”Separate code that changes from the code that doesn’t”

Hotspots are the ”holes” of a framework

Code points where specialisation code can alter behaviour or add behaviour
to the framework

Also known as: hooks / hook methods / variation points

Commonality / variability

The framework code defines the commonality

The hotspots allow for variability

18

OBJECT-ORIENTED APPLICATION FRAMEWORKS

HOTSPOTS BASED UPON INHERITANCE
BankingFramework

<<interface>>

BankCard

<<abstract>>

Account
ATM

uses

BankingApplication

SavingsAccount
MasterCard

19

Filling in hotspots by specialising 
abstract classes, methods and interfaces

OBJECT-ORIENTED APPLICATION FRAMEWORKS

HOTSPOTS BASED UPON COMPOSITION
Framework

<<interface>>

BankCard

<<abstract>>

Account
ATM

Savings- 
Account Visa

uses

Youth- 
Account MasterCard

 a := SavingsAccount new.

 a associate: MasterCard new.

 a associate: VISA new.
 ...

MyAppl

Filling in parameters or objects 
by prefabricated components

20

OBJECT-ORIENTED APPLICATION FRAMEWORKS

FRAMEWORK TYPES : CUSTOMISATION

White-box frameworks

Customisation through inheritance

Require insight in (and access to) implementation

”Easier” to design

More difficult to learn

More programming required for application development

More flexibility

21

White box

Black box

OBJECT-ORIENTED APPLICATION FRAMEWORKS

FRAMEWORK TYPES : CUSTOMISATION

Black-box frameworks

Customisation through composition

Require insight in provided components

”Harder” to design

”Easier” to learn

Less programming required for application development

Limited flexibility (no unanticipated variations)

22

Grey box

OBJECT-ORIENTED APPLICATION FRAMEWORKS

FRAMEWORK TYPES : CUSTOMISATION

Grey box frameworks

White and black box form the extreme boundaries of framework design and
usage principles

Most frameworks live somewhere in between these two extremes

 
 

Grey box frameworks attempt to realise the benefits of both white and black
box designs, while trying to avoid the perceived limitations of both

A successful framework may start its life as white box, maturing towards grey
or even black in a number of revisions

Black boxWhite box
Grey box

23

OBJECT-ORIENTED APPLICATION FRAMEWORKS

CONCRETE EXAMPLE

24

Figure {abstract}

Point

draw(pos)

x, y

currentpos

GroupedFigure

draw(pos) {
 for each f in figs :
 f.draw(pos) }

Collection<Figure> figs

move(newpos)
draw(pos) {abstract}
…

… OF A FRAMEWORK

Line

draw(pos)

Point p1, p2
Polygon

draw(pos)

Collection<Point>
Circle

draw(pos)

center, radius

8A. OBJECT-ORIENTED APPLICATION FRAMEWORKS

CONCRETE EXAMPLE

25

Figure {abstract}

Point

draw(pos)

x, y

currentpos

GroupedFigure

draw(pos) {
 for each f in figs :
 f.draw(pos) }

Collection<Figure> figs

move(newpos)
draw(pos) {abstract}
…

… OF A FRAMEWORK

… OF AN APPLICATION

Line

draw(pos)

Point p1, p2
Polygon

draw(pos)

Collection<Point>
Circle

draw(pos)

center, radius

Clef
draw(pos)

LedgerLines
draw(pos)

Note
draw(pos)

8A. OBJECT-ORIENTED APPLICATION FRAMEWORKS

CONCRETE EXAMPLE

26

Figure {abstract}

Point

draw(pos)

x, y

currentpos

GroupedFigure

draw(pos) {
 for each f in figs :
 f.draw(pos) }

Collection<Figure> figs

move(newpos)
draw(pos) {abstract}
…

… OF A FRAMEWORK

… OF AN APPLICATION

Line

draw(pos)

Point p1, p2
Polygon

draw(pos)

Collection<Point>
Circle

draw(pos)

center, radius

Clef
draw(pos)

LedgerLines
draw(pos)

Note
draw(pos)

HOT SPOT

HOT SPOT

B. TEMPLATE METHODS
(INTERLUDIUM)

LINGI2252 – PROF. KIM MENS

OBJECT-ORIENTED APPLICATION FRAMEWORKS

TEMPLATE METHOD DESIGN PATTERN

Intent

Defines the skeleton of an algorithm in an operation, deferring some steps to
subclasses. Template Method lets subclasses redefine certain steps of the
algorithm without changing the algorithm's structure.

Solution

Break out primitive steps into separate methods in ancestor class.

Construct method for basic algorithm in ancestor that calls the primitive methods.

Override the primitive methods in descendant classes to implement specific tasks.

28

OBJECT-ORIENTED APPLICATION FRAMEWORKS

TEMPLATE METHOD DESIGN PATTERN

Consequences

A fundamental technique for code reuse – particularly important in class libraries and
frameworks to factor out common behaviour.

Leads to inverted control structure called “Hollywood Principle”.

A primitive method in the ancestor may provide a default behaviour that
descendants may optionally override (called hook methods).

Related Patterns

Factory Method is a form of Template Method used to create families of related
objects.

Strategy is an alternate choice when the behaviour needs to be specified or may vary
at run-time.

29

OBJECT-ORIENTED APPLICATION FRAMEWORKS

TEMPLATE METHOD IN FRAMEWORKS

A hotspot in an object-oriented framework is often implemented via a
Template Method.

The template method defines the skeleton of the hot spot

The variable parts are deferred to the so-called hook methods

The template method is defined on a template class which is part of
the framework

The hook methods are defined on hook classes

concrete subclasses of the template class that are provided by
framework users to customise the framework

30

OBJECT-ORIENTED APPLICATION FRAMEWORKS

TEMPLATE METHOD IN FRAMEWORKS

31

The framework
Abstract class

templateMethod(arg)
hookMethod1
hookMethod2

Framework user = a customiser 

(a developer of a concrete application)

OBJECT-ORIENTED APPLICATION FRAMEWORKS

TEMPLATE METHOD IN FRAMEWORKS

32

The framework

The application 
 

customises a framework’s hot spots

Abstract class

templateMethod(arg)
hookMethod1
hookMethod2

Specific class

hookMethod1
hookMethod2

OBJECT-ORIENTED APPLICATION FRAMEWORKS

TEMPLATE METHOD IN FRAMEWORKS

33

The framework
provides abstract classes that must be 
customised before they can be used

The application 
provides subclasses that customise 

the template methods by implementing  
the (abstract) hook methods

Abstract class

templateMethod(arg)
hookMethod1
hookMethod2

Specific class

hookMethod1
hookMethod2

OBJECT-ORIENTED APPLICATION FRAMEWORKS

TEMPLATE METHOD DESIGN PATTERN

34

Abstract class

templateMethod(arg)
hookMethod1
hookMethod2

templateMethod(arg) {
 …
 this.hookMethod1(arg)
 …
 this.hookMethod2 
 …
}

Specific class

hookMethod1
hookMethod2

hookMethod1(arg)
 “do something concrete with arg”

hookMethod2
 “do something concrete”

OBJECT-ORIENTED APPLICATION FRAMEWORKS

CONCRETE EXAMPLE

35

Figure {abstract}

move(newpos)
undraw() {abstract}
draw(pos) {abstract}

Triangle

draw(pos)
undraw(pos)

draw(pos) {
 “draw this Triangle at position pos” 
 
 
 
 
}

undraw(pos) {
 “remove this figure at its position currentpos”
 …
}

Point p1, p2, p3

currentpos

move(newpos) {
 this.undraw();
 this.draw(newpos);
}

pos

p1

p2p3

OBJECT-ORIENTED APPLICATION FRAMEWORKS

SUMMARY

Template methods

are a key technique for building
OO application frameworks

Methods

as units of reuse

Inheritance

as parametrisation mechanism

Late binding of self

self is dynamic; acts as a hook

Abstract class

Subclass 1

hookMethodtemplateMethod
can be abstract or not

hookMethod

Subclass 2

hookMethod

self

inheritance

36

concrete implementation concrete implementation

C. FRAMEWORKS (CONTINUED)
LINGI2252 – PROF. KIM MENS

OBJECT-ORIENTED APPLICATION FRAMEWORKS

CONTRACT BETWEEN FRAMEWORK AND APPLICATION DEVELOPER

Framework (developer) must :

Provide expensive domain knowledge and design

Provide concrete, reliable, executable software

Be sufficiently flexibility to specialise for required context.

Be usable and ”easy” to learn (this is a non-trivial requirement)

Application (developer) must :

keep the contracts of hotspots

understand and follow the interaction rules

38

OBJECT-ORIENTED APPLICATION FRAMEWORKS

LEARNING FRAMEWORKS

Understanding a framework is vital for success

more difficult to understand abstract entities than concrete
classes

interaction patterns are ’hidden’ but vital in order to use a
framework correctly

Learning a framework is not easy

Steep learning curve

Black box frameworks easier to learn than white box

39

OBJECT-ORIENTED APPLICATION FRAMEWORKS

FRAMEWORK COMPOSITION...

How to use more than one framework in a single
application ?

40

ATM

Insurance Framework

Beneficiary

<<abstract>>

Insurance
Contract

uses

Banking Framework

BankCard

<<abstract>>

Account

uses

TheSuperClass Insurance-  
Account

OBJECT-ORIENTED APPLICATION FRAMEWORKS

FRAMEWORK COMPOSITION...

A possible solution : using delegation.

41

Insurance Framework

Beneficiary

<<abstract>>

Insurance
Contract

uses

Banking Framework

BankCard

<<abstract>>

Account
ATM

uses

Insurance-  
Account

TheSuperClass

DefaultAccount

delegate

Default-
Insurance

delegate

OBJECT-ORIENTED APPLICATION FRAMEWORKS

SUMMARY

▸ Frameworks

▸ partial / skeleton application within a well-defined domain

▸ can be tailored / customised for a specific application

▸ reuse of implementation and design

▸ Inversion of Control (“Hollywood” principle)

▸ framework defines flow and interaction patterns

▸ Hotspots = ’hooks’ into framework where tailoring is made

▸ inheritance based : white box approach

▸ composition based : black box approach

▸ Commonality and variability

▸ Use of template methods as implementation technique

OBJECT-ORIENTED APPLICATION FRAMEWORKS

FURTHER READING

Object-Oriented Application Frameworks  
Ted Lewis and friends 
Manning Publications, 1995  

Building Application Frameworks: Object-Oriented Foundations of
Framework Design 
Mohamed E. Fayad, Douglas C. Schmidt, Ralph E. Johnson  
John Wiley & Sons, 1999  

Java Application Frameworks 
Darren Govoni, John Wiley & Sons, 1999

43

D. DESIGN PATTERNS 
VS. FRAMEWORKS

LINGI2252 – PROF. KIM MENS

OBJECT-ORIENTED APPLICATION FRAMEWORKS

DESIGN PATTERNS VS FRAMEWORKS

Both frameworks and design patterns are ways of describing
and documenting solutions to common problems

But design patterns are not frameworks

Patterns are more abstract

And many patterns may be involved in the solution of one
problem

45

OBJECT-ORIENTED APPLICATION FRAMEWORKS

DESIGN PATTERNS VS FRAMEWORKS

Frameworks

codify designs for solving a family of problems within a
specific domain

are instantiated by inheritance and composition of classes

can contain several instances of multiple design patterns

are more “shrink-wrapped”, ready for immediate use

46

OBJECT-ORIENTED APPLICATION FRAMEWORKS

DESIGN PATTERNS VS FRAMEWORKS

Design patterns are

more abstract

smaller architectural elements

less specialised

than frameworks

47

E. REFACTORING TO A
FRAMEWORK

LINGI2252 – PROF. KIM MENS

OBJECT-ORIENTED APPLICATION FRAMEWORKS

THREE CATEGORIES OF REFACTORINGS RELATED TO FRAMEWORK DEVELOPMENT

Three categories of refactorings

that correspond to generic design evolutions occurring frequently
in object-oriented software systems. [Demeyer&al 2000]  

1. Create template methods

2. Optimise class hierarchies

3. Incorporate composition relationships

[Demeyer&al2000] Serge Demeyer, Stéphane Ducasse, Oscar Nierstrasz. Finding Refactorings via Change
Metrics. ACM SIGPLAN Notices, 2000

49

OBJECT-ORIENTED APPLICATION FRAMEWORKS

THREE CATEGORIES OF REFACTORINGS RELATED TO FRAMEWORK DEVELOPMENT

1. Create template methods

Split methods into smaller chunks to separate common behaviour from
specialised parts so that subclasses can override.

Used to improve reusability, remove duplicated functionality.

A
m … …

B

m … …

C

m … …

D
n2

n1

n1n3

B

n

C

n . super n

D

A
m … self n …
n

separate common behaviour (m) 
from specialised parts (n)

50

OBJECT-ORIENTED APPLICATION FRAMEWORKS

THREE CATEGORIES OF REFACTORINGS RELATED TO FRAMEWORK DEVELOPMENT

2. Optimise class hierarchies

Insert or remove classes within a class hierarchy and redistribute the functionality
accordingly.

Used to increase cohesion, simplify interfaces, remove duplicated functionality.

Two subcategories :

A. refactor to specialise

B. refactor to generalise

51

OBJECT-ORIENTED APPLICATION FRAMEWORKS

2. OPTIMISING CLASS HIERARCHIES

A. Refactor to specialise

Improve framework design by decomposing a large,
complex class into several smaller classes.

The complex class usually embodies both a general
abstraction and several different concrete cases that are
candidates for specialisation.

52

OBJECT-ORIENTED APPLICATION FRAMEWORKS

2A. REFACTOR TO SPECIALISE : EXAMPLE

Disc Management for NTFS & OSX

Disc
...

copyDisc
formatDisc

...

NTFSDisc
...

copyDisc
formatDisc

...

OSXDisc
...

copyDisc
formatDisc

...

Disc Management for NTFS

Disc
...

copyDisc
formatDisc

...

Disc
disctype
...
copyDisc
formatDisc

Disc Management for
NTFS & OSX

formatDisc
 self discType = #NTFS
 ifTrue: [.. code1 ..].
 self discType = #OSX
 ifTrue: [.. code2 ..].

software evolution

refactor to 
specialise

53

OBJECT-ORIENTED APPLICATION FRAMEWORKS

2A. REFACTOR TO SPECIALISE

Specialise a class by adding subclasses corresponding to the conditions in
a conditional expression:

Choose a conditional whose conditions suggest subclasses (this depends on
the desired abstraction).

For each condition, create a subclass with a class invariant that matches the
condition.

Copy the body of the condition to each subclass, and in each class simplify
the conditional based on the invariant that is true for the subclass.

Specialise some (or all) expressions that create instances of the superclass.

B. Refactor to generalise

Identify proper abstractions (e.g. abstract classes) by
examining concrete examples and generalising their
commonalities.

OBJECT-ORIENTED APPLICATION FRAMEWORKS

2. OPTIMISING CLASS HIERARCHIES

55

concrete class A

concrete class B
concrete class A concrete class B

abstract class X
abstract 

commonalities

OBJECT-ORIENTED APPLICATION FRAMEWORKS

2B. REFACTOR TO GENERALISE

Abstract classes and frameworks are generalisations

People think concretely, not abstractly

Abstractions are found bottom up, by examining concrete examples first

Generalisation proceeds by:

finding things that are given different names but are really the same (and thus
renaming them)

parameterisation to eliminate differences

breaking large things into small things so that similar components can be found

56

OBJECT-ORIENTED APPLICATION FRAMEWORKS

2B. REFACTOR TO GENERALISE

Steps to create an abstract superclass :

Create a common superclass

Make method signatures compatible

Add method signatures to the superclass

Make method bodies compatible

Make instance variables compatible

Move instance variables to the superclass

Move common code to the abstract superclass

57

abstract 
commonalities

OBJECT-ORIENTED APPLICATION FRAMEWORKS

2B. REFACTOR TO GENERALISE : EXAMPLE

58

PrintServer

print

FileServer

save
FileServer PrintServer

OutputServer

output

OBJECT-ORIENTED APPLICATION FRAMEWORKS

THREE CATEGORIES OF REFACTORINGS RELATED TO FRAMEWORK DEVELOPMENT

3. Incorporate composition relationships

Move functionality to (newly created) sibling classes.

Used to reduce coupling, migrate towards black-box frameworks.

Motivation :

Inheritance is sometimes overused and incorrectly used 
in modelling the relationships among classes.

Aggregations are an alternative way to model these relationships.

OBJECT-ORIENTED APPLICATION FRAMEWORKS

3. INCORPORATING COMPOSITION RELATIONSHIPS : EXAMPLE

60

Matrix

2DArray rep

SparseMatrix 2DArray

MatrixRepresentation

output

Matrix

convert inheritance 
into aggregation

OBJECT-ORIENTED APPLICATION FRAMEWORKS

3. INCORPORATING COMPOSITION RELATIONSHIPS

Refactorings regarding aggregations :

Move instance variables/methods from an aggregate class to the class of one of
its components.

Move instance variables/methods from a component class to the aggregate
classes that contain components which are instances of the component class.

Convert a relationship, modelled using inheritance, into an aggregation and vice
versa. [Johnson&Opdyke1993]

61

[Johnson&Opdyke1993] Ralph E. Johnson, William F. Opdyke. Refactoring and Aggregation. International
Symposium on Object Technologies for Advanced Software. Springer Berlin Heidelberg, 1993.

OBJECT-ORIENTED APPLICATION FRAMEWORKS

POSSIBLE QUESTIONS

▸ Define and explain, in your own words, what an object-oriented application framework is and
illustrate it with a concrete example of a framework you know.

▸ Discuss why/how object-oriented application frameworks can achieve software reuse.

▸ Explain, and illustrate with a concrete example, the principle of inversion of control (a.k.a. the
Hollywood principle) when building object-oriented application frameworks.

▸ What distinguishes an object-oriented application framework from a library?

▸ What is a hotspot in a framework? Explain and illustrate schematically.

▸ What types of frameworks can be distinguished and what are the main differences between
each of these types?

▸ (white box / black box / grey box)

▸ Explain and illustrate the Template Method design pattern and discuss its key importance to
implement object-oriented application frameworks.

CLASS… IS… DISMISSED.

64

https://vimeo.com/35864017

