
SOFTWARE MAINTENANCE 
& EVOLUTION

LINGI2252 – PROF. KIM MENS

SOFTWARE PATTERNS

LINGI2252 – PROF. KIM MENS

A. PATTERNS
LINGI2252 – PROF. KIM MENS

SOFTWARE PATTERNS – PATTERNS

WHERE DOES THE “PATTERNS” IDEA COME FROM?

Influential but controversial architect Christopher Alexander

proposed patterns as a way to reuse extensive architectural
experience

expressed as pre-canned architectural fragments

Several interesting books:

A Pattern Language: Towns, Buildings, Construction. Oxford
University Press, 1977.

The Timeless Way of Building. Oxford University Press, 1979.

4

https://en.wikipedia.org/wiki/Christopher_Alexander

EACH PATTERN DESCRIBES A PROBLEM WHICH
OCCURS OVER AND OVER AGAIN IN OUR
ENVIRONMENT, AND THEN DESCRIBES THE CORE OF
THE SOLUTION TO THAT PROBLEM, IN SUCH A WAY
THAT YOU CAN USE THIS SOLUTION A MILLION TIMES
OVER, WITHOUT EVER DOING IT THE SAME WAY TWICE

Christopher Alexander

SOFTWARE PATTERNS – PATTERNS

WHAT IS A PATTERN?

5

SOFTWARE PATTERNS – PATTERNS

EXAMPLE 1: “LIGHT ON TWO SIDES OF EVERY ROOM”

“When they have a choice, people will always gravitate to those rooms
which have light on two sides, and leave the rooms 
which are lit only from one side unused and empty.

Therefore:

Locate each room so that it has outdoor space on at least two sides,
and then place windows in these outdoor walls so that natural light
falls into every room from more than one direction.”

Christopher Alexander. A Pattern Language: Towns, 
Buildings, Construction. Oxford University Press, 1977.

http://www.patternlanguage.com/apl/aplsample/apl159/apl159.htm

6

http://www.patternlanguage.com/apl/aplsample/apl159/apl159.htm

SOFTWARE PATTERNS – PATTERNS

EXAMPLE 2:“WINDOW PLACE”

7

SOFTWARE PATTERNS – PATTERNS

ADOPTION OF CHRISTOPHER ALEXANDER’S IDEAS

Christopher Alexander's ideas were later adopted in other
disciplines

(often much more heavily than the original application of
patterns to architecture)

in particular in the software engineering community : 
design patterns, architectural patterns, anti patterns, …

Keynote talk at OOPSLA 1996 on “Patterns in Architecture”

video link + keynote text

8

https://www.youtube.com/watch?v=98LdFA-_zfA
https://www.patternlanguage.com/archive/ieee/ieeetext.htm

SOFTWARE PATTERNS – PATTERNS

ADDITIONAL READING

▸ A.o., a good introduction to the
analogy between the work of
Christopher Alexander on patterns
in architecture and its applications
in software development.  

▸ Richard P. Gabriel. Patterns of
Software: Tales from the Software
Community. Oxford University
Press, 1998. ISBN 0195121236

9

B. PATTERNS IN SOFTWARE
LINGI2252 – PROF. KIM MENS

SOFTWARE PATTERNS – PATTERNS IN SOFTWARE

MANY KINDS OF PATTERNS IN SOFTWARE ENGINEERING

11

Best Practice Patterns

Programming Styles and Idioms

Design Patterns

Architectural Patterns

Anti Patterns

Bad Smells and Refactoring Patterns

Analysis Patterns

Organisational Patterns

Software Configuration Management Patterns

Pattern Languages of Program Design

11

SOFTWARE PATTERNS – PATTERNS IN SOFTWARE

SOFTWARE DESIGN & ARCHITECTURAL PATTERNS

E. Gamma, R. Helm, R. Johnson & J. Glissades. Design
Patterns – Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.  

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad & M.
Stal. Pattern-Oriented Software Architecture – A System of
Patterns. Wiley, 1996. 

D. Schmidt, M. Stal, H. Rohnert & F. Buschmann. Pattern-
Oriented Software Architecture – Patterns for Concurrent and
Networked Objects. Wiley, 2001.

12

SOFTWARE PATTERNS – PATTERNS IN SOFTWARE

WHY USE ARCHITECTURAL & DESIGN PATTERNS ?

Patterns provide guidance in the analysis & design process.

Capture proven (design) solutions from prior experiences.

Better structure and design, improved confidence in design.

Improve key software quality factors.

Maintainability, reusability, extensibility, … => better products.

Favour reuse at analysis, architecture & design level.

Codify “good” analyses & designs.

Capture and disseminate know-how.

Help novices in applying good practices.

Encourage abstraction.

13

SOFTWARE PATTERNS – PATTERNS IN SOFTWARE

WHY USE ARCHITECTURAL & DESIGN PATTERNS?

Common vocabulary

Provide explicit name for each pattern, e.g. MVC pattern.

Constitutes a common terminology; reduced complexity.

Within and across teams.

Documentation

Provide explicit representation for each pattern, preserve properties.

Effective, concise documentation.

14

SOFTWARE PATTERNS – PATTERNS IN SOFTWARE

DESIGNING REUSABLE OBJECT-ORIENTED SOFTWARE IS HARD

Reusable solutions should solve a specific problem, but at the
same time be general enough to address future problems and
requirements.

Everything boils down to:

Aha-erlebnis / déjà-vu feeling

Don’t reinvent the wheel

But don’t reinvent the flat tire either ;-)

15

C. ARCHITECTURAL SOFTWARE PATTERNS
LINGI2252 – PROF. KIM MENS

SOFTWARE PATTERNS – ARCHITECTURAL SOFTWARE PATTERNS

DESIGN AND ARCHITECTURAL PATTERNS

Document “proven” solutions to a particular design problem.

Are discovered, not invented:

Takes time to emerge, trial and error;

Requires experience;

Based on practical solutions from existing applications.

Example:

Architectural pattern: Model-View-Controller

Design patterns: Factory, Visitor, Composite, Iterator, …

17

SOFTWARE PATTERNS – ARCHITECTURAL SOFTWARE PATTERNS

ARCHITECTURAL STYLES VS. ARCHITECTURAL PATTERNS

Idiomatic templates for software architecture fragments

Architectural style: more global

Examples: pipes-and-filters, client-server, layered

Architectural pattern: more local

Example: Model-View-Controller

A template made of pre-arranged:

modules / components

relationships / connectors

18

SOFTWARE PATTERNS – ARCHITECTURAL SOFTWARE PATTERNS

EXAMPLE: THE MVC PATTERN (MODEL-VIEW-CONTROLLER)

Goal: uncouple application and user interaction

Applicability: any interactive application

Example:

3 main components:

model 
view 
controller

 controller

 views

 model

19

SOFTWARE PATTERNS – ARCHITECTURAL SOFTWARE PATTERNS

EXAMPLE: THE MVC PATTERN

“Model” component

provides functional core of the application

registers dependent views and controllers

notifies dependent components about data changes

20

SOFTWARE PATTERNS – ARCHITECTURAL SOFTWARE PATTERNS

EXAMPLE: THE MVC PATTERN

“View” component

creates & initialises its associated controller

displays information to the user

retrieves data from model

implements updates for change propagation

21

SOFTWARE PATTERNS – ARCHITECTURAL SOFTWARE PATTERNS

EXAMPLE: THE MVC PATTERN

“Controller” component

accepts user inputs as events

translates events to service requests for model or display
requests for view

implements updates for change propagation (if required)

22

SOFTWARE PATTERNS – ARCHITECTURAL SOFTWARE PATTERNS

THE MVC PATTERN: INTERACTION PROTOCOL

: Model

handleEvent

: View

notifyChange

update

getData

: Controller

service

display

update

getData *

display

return

return

return

return

* to enable/disable user functions

 (e.g. save when data change)

23

SOFTWARE PATTERNS – ARCHITECTURAL SOFTWARE PATTERNS

THE MVC PATTERN: STRUCTURE

24

D. DESIGN PATTERNS
LINGI2252 – PROF. KIM MENS

Add note that this slides are largely
based on Tom’s slides.

* Slides party reused from slides by Prof. Tom Mens at UMons, Belgium

*

SOFTWARE PATTERNS – DESIGN PATTERNS

KEY REFERENCE

Design Patterns

Elements of Reusable Object-
Oriented Software

Erich Gamma 
Richard Helm 
Ralph Johnson 
John Vlissides 
(a.k.a. the “Gang of Four” or “GoF”)

Addison-Wesley, 1995  
ISBN: 0-201-63361-2

26

SOFTWARE PATTERNS – DESIGN PATTERNS

ONLINE REFERENCES

http://www.tutorialspoint.com/design_pattern/index.htm

http://www.oodesign.com/

https://sourcemaking.com/design_patterns

http://rpouiller.developpez.com/tutoriel/java/design-
patterns-gang-of-four/ (in french)

27

http://www.tutorialspoint.com/design_pattern/index.htm
http://www.oodesign.com/
https://sourcemaking.com/design_patterns
http://rpouiller.developpez.com/tutoriel/java/design-patterns-gang-of-four/
http://rpouiller.developpez.com/tutoriel/java/design-patterns-gang-of-four/

DESIGN PATTERNS ARE DESCRIPTIONS OF
COMMUNICATING OBJECTS AND CLASSES THAT
ARE CUSTOMISED TO SOLVE A GENERAL
DESIGN PROBLEM IN A PARTICULAR CONTEXT

Gang of Four

Gang of Four

SOFTWARE PATTERNS – DESIGN PATTERNS 28

WHAT IS A DESIGN PATTERN?

SOFTWARE PATTERNS – DESIGN PATTERNS

SOFTWARE DESIGN PATTERNS

Describe in a reusable way

a recurring design problem and

a best practice solution to this problem.

Are about reusing good designs and solutions

that have worked previously for similar problems.

The intent or rationale of a design pattern is a crucial part of its
definition

as well as its applicability, trade-offs, consequences, related patterns.

29

SOFTWARE PATTERNS – DESIGN PATTERNS

SOFTWARE DESIGN PATTERNS

Identify participating classes and objects, their roles and
collaborations, distribution of responsibilities.

Described in an abstract way:

abstract away from concrete designs;

the way a particular design pattern is implemented may
vary.

Based on practical solutions discovered in main-stream
applications implemented in Smalltalk, Java and C++.

30

SOFTWARE PATTERNS – DESIGN PATTERNS

DESIGN COVERAGE

Large portion of design covered by patterns

Most classes play role in some patterns

Improved understanding

Seductively simple to implement patterns

You still have to write functionality

Common mistake is to think design patterns solve all your
problems

31

SOFTWARE PATTERNS – DESIGN PATTERNS

A FIRST EXAMPLE: THE ABSTRACT FACTORY DESIGN PATTERN

Problem

Solution

Participants

Structure

Applicability

32

SOFTWARE PATTERNS – DESIGN PATTERNS

ABSTRACT FACTORY: THE PROBLEM

Entangled hierarchies

behaviour and visualisation of UI objects are combined in
same inheritance structure

Widget

Window Button Scrollbar

MSWindow MacWindow MSButton MacButton MSScrollbar MacScrollbar

33

SOFTWARE PATTERNS – DESIGN PATTERNS

ABSTRACT FACTORY: THE SOLUTION

Idea of the solution

separate behaviour of UI objects from their visualisation

WidgetLook

Button ScrollbarMSLook MacLook Window

34

SOFTWARE PATTERNS – DESIGN PATTERNS

ABSTRACT FACTORY: THE SOLUTION

The Abstract Factory design pattern

separate behaviour of UI objects from their visualisation

MSLook

newWindow
newButton

MacLook

newWindow
newButton

Look

newWindow
newButton

Widget

Window Button

MSWindow

MacWindow
MacButton

MSButton

35

SOFTWARE PATTERNS – DESIGN PATTERNS

ABSTRACT FACTORY: PARTICIPANTS

The Abstract Factory design pattern

separate behaviour of UI objects from their visualisation

MSLook

newWindow
newButton

MacLook

newWindow
newButton

Look

newWindow
newButton

Widget

Window Button

MSWindow

MacWindow
MacButton

MSButton

ABSTRACT FACTORY

CONCRETE FACTORIES

ABSTRACT PRODUCTS

CONCRETE PRODUCTS

36

SOFTWARE PATTERNS – DESIGN PATTERNS

ABSTRACT FACTORY: PARTICIPANTS

AbstractFactory (Look)

declares an interface for operations that create abstract product objects

ConcreteFactory (MSLook, MacLook)

implements the operations to create concrete product objects

AbstractProduct (Window, Button)

defines a product object to be created by the corresponding concrete factory

ConcreteProduct (MacWindow, MSButton, …)

implements the AbstractProduct interface

Client uses only interfaces declared by AbstractFactory and AbstractProduct classes

37

SOFTWARE PATTERNS – DESIGN PATTERNS

ABSTRACT FACTORY: STRUCTURE

 Normally a single instance of ConcreteFactory is created at run-time

 AbstractFactory defers creation of product objects to its ConcreteFactory subclass

38

SOFTWARE PATTERNS – DESIGN PATTERNS

ABSTRACT FACTORY: APPLICABILITY

This solution can be applied in general when

a system should be independent of how its products are
created, composed, and represented

a system should be configured with families of products

you want to provide a class library of products, and you want
to reveal just their interfaces, not their implementations

a family of related product objects is designed to be used
together, and you need to enforce this constraint

A

39

SOFTWARE PATTERNS – DESIGN PATTERNS

ABSTRACT FACTORY: EVOLVABILITY (1)

Adding a new product Menu

MSLook

newWindow
newButton

MacLook

newWindow
newButton

Look

newWindow
newButton

Widget

Window Button

MSWindow

MacWindow
MacButton

MSButton

40

SOFTWARE PATTERNS – DESIGN PATTERNS

ABSTRACT FACTORY: EVOLVABILITY (1)

Adding a new product Menu

MSLook

newWindow
newButton
newMenu

MacLook

newWindow
newButton
newMenu

Look

newWindow
newButton
newMenu

Widget

Window
Button

MSWindow

MacWindow
MacButton

MSButton

MacMenu

MSMenu

Menu

41

SOFTWARE PATTERNS – DESIGN PATTERNS

ABSTRACT FACTORY: EVOLVABILITY (1)

Adding a new product Menu

MSLook

newWindow
newButton
newMenu

MacLook

newWindow
newButton
newMenu

Look

newWindow
newButton
newMenu

Widget

Window
Button

MSWindow

MacWindow
MacButton

MSButton

MacMenu

MSMenu

Menu

add new operation add new 
product

42

SOFTWARE PATTERNS – DESIGN PATTERNS

ABSTRACT FACTORY: EVOLVABILITY (2)

Adding a new concrete factory LinuxLook

MSLook

newWindow
newButton

MacLook

newWindow
newButton

Look

newWindow
newButton

Widget

Window Button

MSWindow

MacWindow
MacButton

MSButton

43

SOFTWARE PATTERNS – DESIGN PATTERNS

ABSTRACT FACTORY: EVOLVABILITY (2)

Adding a new concrete factory LinuxLook

MSLook

newWindow
newButton

MacLook

newWindow
newButton

Look

newWindow
newButton

LinuxLook

newWindow
newButton

Widget

Window Button

MSWindow

MacWindow
MacButton

LinuxButton
LinuxWindow

MSButton

44

SOFTWARE PATTERNS – DESIGN PATTERNS

ABSTRACT FACTORY: EVOLVABILITY (2)

Adding a new concrete factory LinuxLook

MSLook

newWindow
newButton

MacLook

newWindow
newButton

Look

newWindow
newButton

LinuxLook

newWindow
newButton

Widget

Window Button

MSWindow

MacWindow
MacButton

LinuxButton
LinuxWindow

MSButton

add new 
concrete
factory

add new 
concrete
products

45

E. SELECTED DESIGN PATTERNS
LINGI2252 – PROF. KIM MENS

* Slides party reused from slides by Prof. Tom Mens at UMons, Belgium

*

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS

A SELECTION OF DESIGN PATTERNS

▸ Design pattern catalogue

▸ Factory Method

▸ Template Method

▸ Strategy

▸ Observer

▸ Decorator

▸ Visitor

▸ Singleton

▸ Composite

▸ Builder

▸ Iterator

47

DESIGN PATTERN
CATALOGUE

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS

DESIGN PATTERN CATALOGUE …

Design Patterns can be classified based on two criteria:

Purpose

what a pattern does

Scope

whether the pattern applies primarily to classes or to
objects

49

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS

DESIGN PATTERN CATALOGUE : PURPOSE [GOF]

Creational design patterns

are concerned with the process of object creation

Structural design patterns

are concerned with how to compose classes and objects in
larger structures

Behavioural design patterns

are concerned with algorithms and the separation 
of responsibilities between objects or classes

50

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS

DESIGN PATTERN CATALOGUE : SCOPE

Class Patterns

deal with relationships between classes (and their subclasses)

relationships are static since they are fixed at compile time

Object Patterns

deal with relationships between objects

relationships are more dynamic since they can be changed at
run-time

51

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS

DESIGN PATTERN CATALOGUE …
Purpose

Creational Structural Behavioral
Scope Class Factory Method Adapter (Class) Interpreter

Template Method

Object Abstract Factory
Builder

Prototype
Singleton

Adapter (Object)
Bridge

Composite
Decorator

Façade
Flyweight

Proxy

Chain of Responsibility
Command

Iterator
Mediator
Memento
Observer

State
Strategy
Visitor

52

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS

CREATIONAL PATTERNS

Abstract the instantiation/object creation process

Encapsulates knowledge about which concrete classes to use

Hides how class instances are created and put together

Give a lot of flexibility in what, who, how and when things get created

A creational class pattern

typically uses inheritance to vary the class to be instantiated

and delegates instantiation to another object

53

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS

STRUCTURAL PATTERNS

How to compose classes and objects to form larger structures

When/how should you use inheritance?

When/how should you use aggregation, association, composition?

A structural class pattern uses inheritance to compose interfaces or
implementation

Compositions are fixed at compile time

A structural object pattern describes ways to compose objects to realise
new functionality

Added flexibility: ability to change the composition at run-time

54

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS

BEHAVIOURAL PATTERNS

Concerned with algorithms and the assignment of responsibilities
between objects

A behavioural class pattern uses inheritance to distribute behaviour
between classes

A behavioural object pattern uses object composition rather than
inheritance

describes how groups of objects cooperate  
to perform tasks no single object could carry out by itself

is concerned with encapsulating behaviour in an object  
and delegating requests to it

55

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS

DESCRIPTION OF A DESIGN PATTERN

▸ Catchy name

▸ Classification

▸ Intent

▸ Also known as

▸ Motivation

▸ Applicability

▸ Structure

▸ Participants

▸ Collaboration

▸ Consequences

▸ Implementation

▸ Sample Code

▸ Known Uses

▸ Related Patterns

A DESCRIPTIVE AND UNIQUE
NAME TO HELP IDENTIFY

AND REFER TO THE PATTERN
A DESCRIPTION OF THE GOAL

BEHIND THE PATTERN AND
THE REASON FOR USING IT

OTHER NAMES FOR THE PATTERN

A SCENARIO CONSISTING OF
A PROBLEM AND A CONTEXT
IN WHICH THIS PATTERN CAN

BE USED

SITUATIONS IN WHICH THIS
PATTERN IS USABLE; THE

CONTEXT FOR THE PATTERN

GRAPHICAL REPRESENTATION OF THE PATTERN.
CLASS DIAGRAMS AND INTERACTION DIAGRAMS

CAN BE USED FOR THIS PURPOSE

LIST OF CLASSES AND
OBJECTS USED IN THE

PATTERN AND THEIR ROLES
IN THE DESIGN

HOW CLASSES AND OBJECTS
USED IN THE PATTERN

INTERACT WITH EACH OTHER
RESULTS, SIDE EFFECTS,

AND TRADE OFFS CAUSED BY
USING THE PATTERN

IMPLEMENTATION OF THE
PATTERN; THE SOLUTION
PART OF THE PATTERN

ILLUSTRATION OF HOW THE
PATTERN CAN BE USED IN A
PROGRAMMING LANGUAGE

EXAMPLES OF REAL USAGES OF THE PATTERN

OTHER PATTERNS THAT HAVE SOME RELATIONSHIP
WITH THE PATTERN; DISCUSSION OF THE DIFFERENCES

BETWEEN THE PATTERN AND SIMILAR PATTERNS

56

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS

HOW TO SELECT A DESIGN PATTERN

Study the intent section of the design pattern: 
what problem does it solve?

Consider how the design patterns solves the problem

Study related patterns of similar purpose

Consider what should be variable in your design

Introduce a pattern to refactor the design

57

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS

HOW TO USE A DESIGN PATTERN

Read pattern overview for its Applicability and Consequences

Study the Structure, Participants and Collaboration sections

Look at the Sample Code

Choose names for the Participants (classes and methods) 
meaningful in your context

Define the classes and appropriate interfaces

Implement the operations to carry out the responsibilities and
collaborations in the pattern

58

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS

WHEN TO USE A DESIGN PATTERN

Avoid overstructuring

Only use design patterns when there is a real need.

Introducing design patterns too early may be
counterproductive.  
It makes the design structure unnecessarily complex.

Do not waste the effort of introducing a design pattern  
if you are not sure that it will be needed.

59

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS

WHEN TO USE A DESIGN PATTERN

Avoid understructuring

If there is a need for design patterns, use them!

Use refactorings to introduce design patterns in existing
code.

60

FACTORY METHOD

SELECTED DESIGN
PATTERNS

http://www.oodesign.com/factory-method-pattern.html

http://www.oodesign.com/factory-method-pattern.html

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS

A SELECTION OF DESIGN PATTERNS

▸ Design pattern catalogue

▸ Factory Method

▸ Template Method

▸ Strategy

▸ Observer

▸ Decorator

▸ Visitor

▸ Singleton

▸ Composite

▸ Builder

▸ Iterator

62

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: FACTORY METHOD

FACTORY METHOD

Classification: Class Creational.

Intent: Define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory Method
lets a class defer instantiation to subclasses.

Motivating example: Application framework for handling
documents in a desktop application.

63

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: FACTORY METHOD

FACTORY METHOD : MOTIVATION

Consider an application framework  
for creating desktop applications.

Such applications work with documents.

The framework contains basic operations  
for opening, closing and saving documents.

Specific applications (e.g., subclasses of Application) can create their own kinds of documents
(subclasses of Document)

For example, a DrawingApplication creates DrawingDocuments.

To create application-specific documents, the abstract Application class needs to delegate to its
subclasses.

Document
open():void
save(filename):void
close():void

Application
docs:Document[]
createDocument():Document  
newDocument(type):void
openDocument(filename):void

public void newDocument(String type) {
 Document doc = this.createDocument(type);
 docs.add(doc);
 doc.open();
}

64

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: FACTORY METHOD

FACTORY METHOD : MOTIVATION
Document

open():void
save(filename):void
close():void

Application
docs:Document[]
createDocument():Document  
newDocument(type):void
openDocument(filename):void

public void newDocument(String type) {
 Document doc = this.createDocument(type);
 docs.add(doc);
 doc.open();
}

DrawingApplication

createDocument()

public Document createDocument() {
 return new DrawingDocument()
}

DrawingDocument
open():void
save(filename):void
close():void

create

65

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: FACTORY METHOD

FACTORY METHOD : APPLICABILITY

Use the Factory Method design pattern when:

A class can’t anticipate the class of objects it must create

A class wants its subclasses to specify the objects it creates

Classes delegate responsibility to one of several helper
subclasses, and you want to localise the knowledge of
which helper classes to use

66

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: FACTORY METHOD

FACTORY METHOD : PARTICIPANTS
Document

open():void
save(filename):void
close():void

Application
docs:Document[]
createDocument():Document  
newDocument(type):void
openDocument(filename):void

public void newDocument(String type) {
 Document doc = this.createDocument(type);
 docs.add(doc);
 doc.open();
}

DrawingApplication

createDocument()

public Document createDocument() {
 return new DrawingDocument()
}

DrawingDocument
open():void
save(filename):void
close():void

PRODUCT

CONCRETE 
PRODUCT

CREATOR

CONCRETE 
CREATORcreate

67

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: FACTORY METHOD

FACTORY METHOD : PARTICIPANTS

Product (Document)

Defines the interface of objects the factory method creates

ConcreteProduct (DrawingDocument)

Implements the Product interface

Creator (Application)

Declares the abstract factory method (createDocument)

May call the factory method to create a Product object

ConcreteCreator (DrawingApplication)

Overrides factory method with a concrete one to return a ConcreteProduct instance

68

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: FACTORY METHOD

FACTORY METHOD : STRUCTURE
Product

 
 

Creator

factoryMethod()

ConcreteCreator

factoryMethod()

ConcreteProduct

create

69

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: FACTORY METHOD

FACTORY METHOD : COLLABORATIONS

Creator relies on its ConcreteCreator subclasses 
to specify the concrete factory method so that it returns an
instance of the appropriate ConcreteProduct

70

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: FACTORY METHOD

FACTORY METHOD: CONSEQUENCES

More reusable than creating objects directly

Connects parallel class hierarchies

Product

ConcreteProductA

Creator

factoryMethod()

ConcreteCreatorA

factoryMethod()

Client

ConcreteCreatorB

factoryMethod()

ConcreteProductB

createcreate

71

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: FACTORY METHOD

FACTORY METHOD: IMPLEMENTATION

Variation 1:

Some factory methods can provide a default. In that case
the factory method is not abstract. Application

docs:Document[]
createDocument():Document  
newDocument(type):void
openDocument(filename):void

public Document createDocument(String type){
if (type.isEqual("drawing"))

return new DrawingDocument();
…

}

72

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: FACTORY METHOD

FACTORY METHOD: IMPLEMENTATION

Variation 2:

Factory methods can be parameterised to return multiple
kinds of products.

e.g. pass an extra parameter to createDocument to specify
the kind of Document to create.

73

TEMPLATE
METHOD

SELECTED DESIGN
PATTERNS

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: TEMPLATE METHOD

A SELECTION OF DESIGN PATTERNS

▸ Design pattern catalogue

▸ Factory Method

▸ Template Method

▸ Strategy

▸ Observer

▸ Decorator

▸ Visitor

▸ Singleton

▸ Composite

▸ Builder

▸ Iterator

WILL BE DISCUSSED LATER
WHEN TALKING ABOUT

APPLICATION FRAMEWORKS

75

STRATEGY
SELECTED DESIGN
PATTERNS

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: STRATEGY

A SELECTION OF DESIGN PATTERNS

▸ Design pattern catalogue

▸ Factory Method

▸ Template Method

▸ Strategy

▸ Observer

▸ Decorator

▸ Visitor

▸ Singleton

▸ Composite

▸ Builder

▸ Iterator

77

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: STRATEGY

STRATEGY

Classification: Object Behavioural.

Intent: Define a family of algorithms, encapsulate each one,
and make them interchangeable. Strategy lets the algorithm
vary independently from clients that use it.

Motivating example:

Different sorting algorithms

String search in a text processor

78

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: STRATEGY

STRATEGY: MOTIVATION

There are common situations when classes differ only in their
behaviour. For such cases it is a good idea to isolate the
algorithms in separate classes in order to have the ability to
select different algorithms at runtime.

SearchAlgorithm2

searchFor(String, Text)

SearchAlgorithm1

searchFor(String, Text)

TextProcessor

text : Text

search(String)

79

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: STRATEGY

STRATEGY: MOTIVATION

There are common situations when classes differ only in their
behaviour. For such cases it is a good idea to isolate the
algorithms in separate classes in order to have the ability to
select different algorithms at runtime.

searcher
SearchAlgorithm

searchFor(String, Text)

SearchAlgorithm2

searchFor(String, Text)

SearchAlgorithm1

searchFor(String, Text)

TextProcessor

text : Text

search(String)

1

search(String s) {
 …

searcher.searchFor(s,text)
 …
}

80

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: STRATEGY

STRATEGY: APPLICABILITY

Use the Strategy design pattern when

Many related classes that differ only in their behaviour

You need different variants of an algorithm

An algorithm uses data that clients should not know about

A class defines many behaviours

81

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: STRATEGY

STRATEGY: PARTICIPANTS

Strategy (SearchAlgorithm)

Declares an interface common to all supported algorithms. Context uses this
interface to call the algorithm defined by a ConcreteStrategy

ConcreteStrategy (SearchAlgorithm1, SearchAlgorithm2)

Implements the algorithm using the Strategy interface

Context (TextProcessor)

Is configured with a ConcreteStrategy object

Maintains a reference to a Strategy object

May define an interface that lets Strategy access its data

82

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: STRATEGY

STRATEGY: STRUCTURE

Strategy

algorithmInterface()

Strategy2

algorithmInterface()

Strategy1

algorithmInterface()

Context

strategy : Strategy  

contextInterface()

1

strategy

contextInterface() {
 …

strategy.algorithmInterface()
 …
}

83

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: STRATEGY

STRATEGY: COLLABORATIONS

Strategy and Context interact to implement the chosen algorithm

Context may pass all data required by the algorithm to the
strategy when the algorithm is called

Context can pass itself as an argument to Strategy operations

A Context forwards requests from its clients to its strategy

Clients usually create and pass a ConcreteStrategy object to
the Context. From then on, they interact with the Context
exclusively.

84

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: STRATEGY

STRATEGY: CONSEQUENCES

Families of related algorithms

An alternative to subclassing

Strategies eliminate conditionals

Provide a choice of implementation

allow for different implementations of same behaviour

Overhead involved

Communication between Context and Strategy

Increased number of objects

85

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: STRATEGY

STRATEGY: IMPLEMENTATION

The Strategy interface must provide enough information to
ConcreteStrategy

Default behaviour can be incorporated in the Context object.
If no strategy object is present, this default behaviour can be
used.

86

DECORATOR
SELECTED DESIGN
PATTERNS

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: DECORATOR

A SELECTION OF DESIGN PATTERNS

▸ Design pattern catalogue

▸ Factory Method

▸ Template Method

▸ Strategy

▸ Observer

▸ Decorator

▸ Visitor

▸ Singleton

▸ Composite

▸ Builder

▸ Iterator

88

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: DECORATOR

 DECORATOR

Classification: Object Structural.

Intent:

Attach additional responsibilities to an object dynamically.
Decorators provide a dynamic alternative for subclassing.

Motivating example:

Adding borders/scrollbars/… to a visual component

89

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: DECORATOR

DECORATOR: MOTIVATION

Traditional solution impractical

when I want to apply different
decorations to a same component

when I want to apply a same
decoration to different components

VisualComponent

draw()

TextViewWithBorder

draw()
drawBorder()

TextViewWithScrollBar

draw()
scrollTo()

draw() {
 super.draw();
 drawBorder()
}

TextView

draw()

90

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: DECORATOR

DECORATOR: MOTIVATION

component

VisualComponent

draw()

TextView

draw()

Decorator

draw()

BorderDecorator

draw()
drawBorder()

ScrollDecorator

draw()
scrollTo()

1

draw() {
 …

component.draw()
 …
}

draw() {
 super.draw();
 drawBorder()
}

Solution with decorator 
design pattern

91

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: DECORATOR

DECORATOR: APPLICABILITY

Use the Decorator design pattern

To add responsibilities to individual objects dynamically
and transparently without affecting other objects

For responsibilities that can be withdrawn

When extending by subclassing is impractical

92

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: DECORATOR

DECORATOR: PARTICIPANTS

Component (VisualComponent)

Defines the interface for objects that can have responsibilities added to them
dynamically

ConcreteComponent (TextView)

Defines an object to which we want to attach additional responsibilities

Decorator (Decorator)

Maintains a reference to a Component object and defines an interface that
conforms to the Components interface

ConcreteDecorator (BorderDecorator)

Adds responsibilities to the component

93

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: DECORATOR

DECORATOR: MOTIVATION

component

Component

operation()

ConcreteComponent

operation()

Decorator

operation()

ConcreteDecoratorB
added state
operation()

ConcreteDecoratorA
added state
operation()

1

operation() {
 …

component.operation()
 …
}

operation() {
 super.operation();
 …added behaviour…
}

94

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: DECORATOR

DECORATOR: COLLABORATIONS

Decorator forwards requests to the Component object. It
may optionally perform additional behaviour before and
after forwarding the request

95

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: DECORATOR

DECORATOR: CONSEQUENCES

More flexible than static inheritance

Possible to dynamically add or withdraw responsibilities

Avoids classes with a lot of features

Lots of little objects

96

SOFTWARE PATTERNS – SELECTED DESIGN PATTERNS: DECORATOR

DECORATOR: IMPLEMENTATION

Object identity can be a problem

a decorated component is not identical to the object itself

97

F. ANTIPATTERNS
LINGI2252 – PROF. KIM MENS

* Slides party reused from slides by Prof. Tom Mens at UMons, Belgium

*

SOFTWARE PATTERNS – ANTI PATTERNS

KEY REFERENCE

Anti Patterns

Refactoring Software, Architectures
and Projects in Crisis

W. J. Brown 
R. C. Malveau 
H. W. McCormick 
T.J. Mowbray 

John Wiley & Sons, 1997

99

SOFTWARE PATTERNS – ANTI PATTERNS

WHAT ARE ANTIPATTERNS?

Design patterns identify good working practices

Anti patterns identify common mistakes and how these
mistakes can be overcome in refactored solutions.

An AntiPattern is

“a commonly used solution to a problem that generates
decidedly negative consequences”

100

SOFTWARE PATTERNS – ANTI PATTERNS

WHAT ARE ANTIPATTERNS?

An AntiPattern is a special (negative) design pattern  
which features an extra refactored solution to the problem.

Context

Forces

P
ro

bl
em

Solution

Pattern
Context

Forces

P
ro

bl
em

Negative Solution

AntiPattern

P
ro

bl
em

Refactored Solution

101

SOFTWARE PATTERNS – ANTI PATTERNS

7 DEADLY SINS

1. Haste : Hasty decisions lead to compromises in software
quality. Especially testing is a victim.

“Just clean up the code, we ship tomorrow…”

2. Apathy : Not caring about solving known problems

“Reuse? Who’s ever gonna reuse this crappy code?”

3. Narrow-mindedness : Refusal to practice solutions that are
widely known to be effective.

“I don’t need to know, and… I don’t care to know”

102

SOFTWARE PATTERNS – ANTI PATTERNS

7 DEADLY SINS

4. Sloth (lazyness) : Making poor decisions based upon easy
answers (lazy developers)

5. Avarice (greed) : The modeling of excessive details, resulting
in overcomplexity due to insufficient abstraction

“I’m impressed ! The most complex model ever done !”

6. Ignorance : Failing to seek understanding

“100 pages… let’s find a one page summary on the net”

7. Pride : Reinventing designs instead of reusing them.

103

SOFTWARE PATTERNS – ANTI PATTERNS

CATEGORIES OF ANTIPATTERNS

Development AntiPatterns

technical problems/solutions encountered by programmers

Architectural AntiPatterns

identification of common problems in system structures

Managerial AntiPatterns

addresses common problems in software processes and
development organisations

104

SOFTWARE PATTERNS – ANTI PATTERNS

DEVELOPMENT ANTIPATTERNS

The Blob

Continuous Obsolescence

Lava Flow

Ambiguous Viewpoint

Functional Decomposition

Poltergeists

Golden Hammer

Boat Anchor

Dead End

Spaghetti Code

Minefield Walking

Cut-and-Paste

105

SOFTWARE PATTERNS – ANTI PATTERNS

EXAMPLE: THE BLOB

Category : Software Development

Also Known As : The God Class

Scale : Application

Refactored Solution Name : Refactoring of Responsibilities

Root Causes : Sloth, Haste

106

SOFTWARE PATTERNS – ANTI PATTERNS

THE BLOB: GENERAL FORM

Designs where one class monopolises the processing, and
other classes primarily encapsulate data

Key problem: majority of responsibilities allocated to a
single class.

In general it is a kind of procedural design

conflicts with OO paradigm

107

SOFTWARE PATTERNS – ANTI PATTERNS

THE BLOB: REFACTORED SOLUTION

Identify or categorise related attributes and operations

Look for ‘natural homes’ for these collections of functionality

Apply OO design techniques (e.g., inheritance, …)

Apply refactorings to bring code back in shape

108

G. CONCLUSION
LINGI2252 – PROF. KIM MENS

SOFTWARE PATTERNS – CONCLUSION

SOFTWARE PATTERNS …

capture successful solutions to recurring problems that arise
during software construction

define a common vocabulary amongst software developers

increase reuse of design as opposed to reuse of
implementation

help to improve software quality

can be introduced by refactoring

should be used with care! (anti patterns)

110

SOFTWARE PATTERNS – CONCLUSION

ARCHITECTURAL AND DESIGN PATTERNS ARE

Smart

provide elegant solutions that a novice would not think of

Generic

independent of a specific system or programming language

Well-proven

successfully tested and applied in several real-world
applications

111

SOFTWARE PATTERNS – QUESTIONS

POSSIBLE QUESTIONS (1)

▸ What do Christopher Alexander’s (building) architectural patterns and
(software) design patterns have in common? Explain with a concrete example.

▸ Give a definition of the notion of “design pattern”.

▸ What are design patterns good for and why? Why cannot you say “I have
invented a design pattern”?

▸ Explain the different parts of which a design pattern description typically
exists.

▸ (Catchy name, Classification, Intent, Also known as, Motivation,
Applicability, Structure, Participants, Collaboration, Consequences,
Implementation, Sample Code, Known Uses, Related Patterns)

SOFTWARE PATTERNS – QUESTIONS

POSSIBLE QUESTIONS (2)

▸ Explain and illustrate the Abstract Factory design pattern in detail. Clearly
mention its problem, solution, participants, structure and applicability.

▸ Explain the Factory Method design pattern in detail. Clearly mention its
Intent, Motivation, Applicability, Participants, Collaboration, Consequences
and Implementation.

▸ Same question for the Strategy and Decorator design patterns.

▸ What is an antipattern and how does it compare to a design pattern? What
purpose does it serve?

▸ Explain at least 4 of the 7 deadly sins related to antipatterns.

▸ Explain The Blob antipattern.

CLASS… IS… DISMISSED.

https://vimeo.com/35864017

