
SOFTWARE MAINTENANCE 
& EVOLUTION

LINGI2252 – PROF. KIM MENS

BAD CODE SMELLS

LINGI2252 – PROF. KIM MENS

A. INTRODUCTION
LINGI2252 – PROF. KIM MENS

Bad Smells in Code

Reference

Martin Fowler, Refactoring: Improving the Design of Existing Code. 
Addison Wesley, 2000. ISBN: 0201485672

Chapter 3: Bad Smells in Code, by Kent Beck and Martin Fowler

Overview of this presentation

Introduction

A classification of bad smells, including a  
detailed illustration of some of them

Conclusion
!4

Introduction

Bad Smells = “bad smelling code”

indicate that your code is ripe for refactoring

Bad smells are about

when to modify your code

Refactoring is about

how to change code by applying refactorings

!5

Bad Smells

Allow us to identify

what needs to be changed in order to improve the code

A recipe book to help us choose the right refactoring pattern

No precise criteria

More to give an intuition and indications

Goal : a more “habitable” code.

!6

Side note: Habitable code

Habitable code is code in which developers feel at home 
(even when the code was not written by them)

Symptoms of inhabitable code include 
overuse of abstraction or inappropriate compression

Habitable code should be easy to read, easy to change

Software needs to be habitable because it always has to change

[Richard P. Gabriel, Patterns of Software: Tales from the  
 Software Community, Oxford University Press, 1996]

!7

B. CLASSIFICATION OF BAD SMELLS 
INCLUDING A DETAILED DISCUSSION OF 5 OF THEM

LINGI2252 – PROF. KIM MENS

An Online Classification
https://sourcemaking.com/refactoring

!9

DISCLAIMER: 
SEVERAL CARTOONS SHOWN IN

THIS PRESENTATION WERE
BORROWED FROM THAT SITE

https://sourcemaking.com/refactoring

Bad Smells : Classification
The top crime

Class / method organisation

Large class, Long Method, Long Parameter List, Lazy Class, Data Class, …

Lack of loose coupling or cohesion

Inappropriate Intimacy, Feature Envy, Data Clumps, …

Too much or too little delegation

Message Chains, Middle Man, …

Non Object-Oriented control or data structures

Switch Statements, Primitive Obsession, …

Other : Comments
!10

Bad Smells : Alternative Classification

Bloaters are too large to handle

Object-orientation abusers  
do not respect OO principles

Change preventers stand in the way of change

Dispensables are things you could do without

Couplers contribute to excessive coupling between
classes

Other smells
!11

Bad Smells : Classification
The top crime

Class / method organisation

Large class, Long Method, Long Parameter List, Lazy Class, Data Class, …

Lack of loose coupling or cohesion

Inappropriate Intimacy, Feature Envy, Data Clumps, …

Too much or too little delegation

Message Chains, Middle Man, …

Non Object-Oriented control or data structures

Switch Statements, Primitive Obsession, …

Other : Comments
!12

The top crime

!13

Code duplication

Code duplication

Duplicated code is the number 1 in the stink parade !

We have duplicated code when we have 
the same code structure in more than one place

Why is duplicated code bad?

A fundamental rule of thumb : 
it’s always better to have a unified code

!14

Code duplication example 1
public double ringSurface(r1,r2) {

// calculate the surface of the first circle
double surf1 = bigCircleSurface(r1);
// calculate the surface of the second circle
double surf2 = smallCircleSurface(r2);
return surf1 - surf2;

}

private double bigCircleSurface(r1) {
pi = 4* (arctan 1/2 + arctan 1/3);
return pi*sqr(r1);

}

private double smallCircleSurface(r2) {
pi = 4* (arctan 1/2 + arctan 1/3);
return pi*sqr(r2);

}
!15

Code duplication example 2
Class

method1

method2

method3

code

code

code

code

Same expression in two
or more methods of the
same class

!16

Code duplication example 3

methodA
code

Class

methodB
code

SubClassA SubClassB

Same expression in two
sibling classes

inherits
from

!17

Code duplication example 4

methodA
code

methodB
code

ClassA ClassB

Same expression in two
unrelated classes

!18

Code duplication: Refactoring Patterns (1)

public double ringSurface(r1,r2) {

 // calculate the surface of the first circle

 double surf1 = surface(r1);

 //calculate the surface of the second circle

 double surf2 = surface(r2);

 return surf1-surf2;

}

private double surface(r) {

 pi = 4* (arctan 1/2 + arctan 1/3);

 return pi*sqr(r); }

Extract method
+

Rename method

!19

Code duplication: Refactoring Patterns (2)

Class

method1

method2

method3

code

code

code

code

Same expression in two or
more methods of the same class

Extract
method

Class

method1

method2

Call methX()

Call methX()

Call methX()

method3
Call methX()

methX()

xcodeReturn

!20

Code duplication: Refactoring Patterns (3)

Same expression in
two sibling classes

Extract method
+

Pull up field

Same code

Extract method
+

Form Template
Method

Similar
code

Substitute
algorithm

Different
algorithm

Class

SubClass A SubClass B

!21

Code duplication: Refactoring Patterns (4)

methodA

ClassA ClassB

Same expression
in two unrelated classes

Call ClassC.methX()

methodB

Call ClassC.methX()

methX()

codereturn

Extract
class

Extract
class

code code

!22

Code duplication: Refactoring Patterns (4’)

methodA

ClassA ClassB

Same expression
in two unrelated classes

Call ClassC.methXcode()

methodB

Call ClassA.methodA()

If the method really belongs in one
of the two classes, keep it there

and invoke it from the other class

code code

!23

Bad Smells : Classification
The top crime

Class / method organisation

Large class, Long Method, Long Parameter List, Lazy Class, Data Class, …

Lack of loose coupling or cohesion

Inappropriate Intimacy, Feature Envy, Data Clumps, …

Too much or too little delegation

Message Chains, Middle Man, …

Non Object-Oriented control or data structures

Switch Statements, Primitive Obsession, …

Other : Comments
!24

Large Class

A large class is a class that 
is trying to do too much

Often shows up as too many instance variables

Use Extract Class or Extract Subclass to bundle
variables

choose variables that belong together in the extracted class

common prefixes and suffixes may suggest which ones may
go together, e.g. depositAmount and depositCurrency

!25* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

https://sourcemaking.com/refactoring

Large Class

A class may also be too large in the sense that it has too much code

likely some code inside the class is duplicated

solve it by extracting the duplicated code in separate methods
using Extract Method

or move part of the code to a new class, using Extract Class
or Extract Subclass

if need be, move existing or extracted methods to another class
using Move Method

!26

Long Parameter List

In procedural programming
languages, we pass as parameters
everything needed by a subroutine

Because the only alternative is
global variables

With objects you don’t pass
everything the method needs

!27* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

https://sourcemaking.com/refactoring

Long Parameter List

Long parameter lists are hard to understand

Pass only the needed number of variables

Use Replace Parameter with Method when
you can get the data in one parameter by making
a request of an object you already know about

!28

Lazy Class

Each class cost money (and brain cells) to maintain and understand

A class that isn't doing enough to pay for itself should be eliminated

It might be a class that was added because of changes that were
planned but not made

Use Collapse Hierarchy or Inline Class to eliminate the class.

Person
name
getTelephoneNumber

Telephone Number
areaCode 
number

getTelephoneNumber

Person
name 
areaCode 
number

getTelephoneNumber
!29* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

https://sourcemaking.com/refactoring

Data Class

Classes with just fields, getters, setters and nothing else

If there are public fields, use Encapsulate Field

For fields that should not be changed use Remove
Setting Method

!30* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

https://sourcemaking.com/refactoring

Long Method

Object programs live best and longest with short methods

New OO programmers feel that OO programs are endless sequences
of delegation

Older languages carried an overhead in subroutine calls which deterred
people from small methods

There is still an overhead to the reader of the code because you
have to switch context to see what the sub-procedure does (but the
development environment helps us)

Important to have a good name for small methods

Rename Method
!31

Long Method

The longer a procedure is, the more difficult it is to
understand what the code does

 More difficult to read

 Bad for maintainability

 More difficult to make modifications

To summarise… less habitable !

!32* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

https://sourcemaking.com/refactoring

Long Method

Too avoid too long methods, decompose methods in many
small ones

Heuristic: whenever you feel the need to comment
something, write a method instead

containing the code that was commented

named it after the intention of the code 
rather than how it does it

Even a single line is worth extracting if it needs explanation

!33

Long Method: Example

!34

void printOwing() {

 Enumeration e = _orders.elements();

 double outstanding = 0.0;

 // Print banner 
 System.out.println(“******************“); 
 System.out.println(“***** Customer *****“); 
 System.out.println(“******************“);

 // Calcultate outstanding 
 While (e.hasMoreElements()) { 
 Order each = (Order) e.nextElement(); 
 outstanding += each.getAmount(); 
 }

 // Print details 
 System.out.println(“name: “ + _name); 
 System.out.println(“amount” + outstanding); 
}

Example was
shortened to
fit on 1 slide

Long Method: Refactoring patterns

99% of the time, all we have to do to shorten a method is
Extract Method

Find parts of the method that seem to go together nicely and
extract them into a new method.

It can lead to problems…

Many temps : use Replace Temp with Query

Long lists of parameters can be slimmed down with
Introduce Parameter Object

!35

Long Method: Refactoring patterns

But how to identify the clumps of code to extract ?

Look for comments…

A block of code with a comment that tells you what it is
doing can be replaced by a method whose name is based on
the comments

Loops also give signs for extractions…

Extract the loop and the code within the loop into its own
method.

!36

Long Method Example revisited

!37

void printOwing() {

 Enumeration e = _orders.elements();

 double outstanding = 0.0;

 // Print banner 
 System.out.println(“******************“); 
 System.out.println(“***** Customer *****“); 
 System.out.println(“******************“);

 // Calcultate outstanding 
 While (e.hasMoreElements()) { 
 Order each = (Order) e.nextElement(); 
 outstanding += each.getAmount(); 
 }

 // Print details 
 System.out.println(“name: “ + _name); 
 System.out.println(“amount” + outstanding); 
}

Long Method Example revisited

!38

void printOwing() {

 Enumeration e = _orders.elements();

 double outstanding = 0.0;

 // Print banner 
 System.out.println(“******************“); 
 System.out.println(“***** Customer *****“); 
 System.out.println(“******************“);

 // Calcultate outstanding 
 While (e.hasMoreElements()) { 
 Order each = (Order) e.nextElement(); 
 outstanding += each.getAmount(); 
 }

 // Print details 
 System.out.println(“name: “ + _name); 
 System.out.println(“amount” + outstanding); 
}

Long Method Example revisited

!39

void printOwing() {

 Enumeration e = _orders.elements(); 
 double outstanding = 0.0;

 printBanner();

 // Calcultate outstanding 
 While (e.hasMoreElements()) { 
 Order each = (Order) e.nextElement(); 
 outstanding += each.getAmount(); 
 }

 // Print details 
 System.out.println(“name: “ + _name); 
 System.out.println(“amount” + outstanding); 
}

void printBanner() { 
 System.out.println(“******************“); 
 System.out.println(“***** Customer ****“); 
 System.out.println(“******************“); 
}

1. 
Extract Method  
Trivially easy !

Long Method Example revisited

!40

void printOwing() {

 Enumeration e = _orders.elements(); 
 double outstanding = 0.0;

 printBanner();

 // Calcultate outstanding 
 While (e.hasMoreElements()) { 
 Order each = (Order) e.nextElement(); 
 outstanding += each.getAmount(); 
 }

 // Print details 
 System.out.println(“name: “ + _name); 
 System.out.println(“amount” + outstanding); 
}

void printBanner() { 
 System.out.println(“******************“); 
 System.out.println(“***** Customer ****“); 
 System.out.println(“******************“); 
}

Long Method Example revisited

!41

2. 
Extract Method  
Using Local Variables

void printOwing() {

 Enumeration e = _orders.elements(); 
 double outstanding = 0.0;

 printBanner();

 // Calcultate outstanding 
 While (e.hasMoreElements()) { 
 Order each = (Order) e.nextElement(); 
 outstanding += each.getAmount(); 
 }

 printDetails(outstanding); 
}

void printDetails(double outstanding) {  
 System.out.println(“name: “ + _name); 
 System.out.println(“amount” + outstanding); 
}

void printBanner() { … }

Long Method Example revisited

!42

void printOwing() {

 Enumeration e = _orders.elements(); 
 double outstanding = 0.0;

 printBanner();

 // Calcultate outstanding 
 while (e.hasMoreElements()) { 
 Order each = (Order) e.nextElement(); 
 outstanding += each.getAmount(); 
 }

 printDetails(outstanding); 
}

void printDetails(double outstanding) {  
 System.out.println(“name: “ + _name); 
 System.out.println(“amount” + outstanding); 
}

void printBanner() { … }

Long Method Example revisited

!43

3. 
Extract Method
Reassigning a Local
Variable

void printOwing() {

 printBanner();

 double outstanding = getOutstanding();

 printDetails(outstanding); 
}

double getOutstanding() {

 Enumeration e = _orders.elements(); 
 double result = 0.0;

 While (e.hasMoreElements()) { 
 Order each = (Order) e.nextElement(); 
 result += each.getAmount(); 
 } 
 return result; 
}

void printDetails(double outstanding) {…}

void printBanner() { … }

Bad Smells : Classification
The top crime

Class / method organisation

Large class, Long Method, Long Parameter List, Lazy Class, Data Class, …

Lack of loose coupling or cohesion

Inappropriate Intimacy, Feature Envy, Data Clumps, …

Too much or too little delegation

Message Chains, Middle Man, …

Non Object-Oriented control or data structures

Switch Statements, Primitive Obsession, …

Other : Comments
!44

Coupling and cohesion

Coupling is the degree to which different software
components depend on each other

Cohesion is the degree to which the elements within a
software module belong together

Low cohesion and tight coupling are bad smells (why?)

!45

Inappropriate Intimacy
Pairs of classes that know too much
about each other's private details

Use Move Method and Move
Field to separate the pieces to
reduce the intimacy

If subclasses know more about their
parents than their parents would like
them to know

Apply Replace Inheritance
with Delegation

!46* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

https://sourcemaking.com/refactoring

Data Clumps

A certain number of data items in lots of places

Examples: fields in a couple of classes, parameters in many
method signatures

Ought to be made into their own object

When the clumps are fields, use Extract Class to turn them
into an object

When the clumps are parameters, use Introduce Parameter
Object to slim them down

!47

Feature Envy

When a method seems more interested in a class
other than the one it actually is in

!48* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

https://sourcemaking.com/refactoring

Feature Envy

In other words, when a method invokes too many times
methods on another object to calculate some value

Why is it bad to invoke a zillion times methods from
another class?

Because, in general, it is not logical from an OO
point of view.

Put things together that change together !

!49

Feature Envy: Example (1)

public void mainFeatureEnvy () {

 OtherClass.getMethod1();

 OtherClass.getMethod2();

 OtherClass.getMethod3();

 OtherClass.getMethod4();

}

public void getMethod1 () { … }

public void getMethod2 () { … }

public void getMethod3 () { … }

public void getMethod4 () { … }

OtherClass

!50

Feature Envy: Refactoring Patterns (1)
First solution : Move Method

public void getMethod1 () { … }

public void getMethod2 () { … }

public void getMethod3 () { … }

public void getMethod4 () { … }

public void mainFeatureEnvy () {

 getMethod1();

 getMethod2();

 getMethod3();

 getMethod4();

}

OtherClass

Could we use
Extract method ?

Yes ! If only a part
of the method

suffers from envy

!51

Feature Envy: Example (2)
Public Void mainFeatureEnvy () {

 Class1.getMethod1();

 Class1.getMethod2();

 Class2.getMethod3();

 Class2.getMethod4();

}

Public Void getMethod1 () { … }

Public Void getMethod2 () { … }

Class1

Public Void getMethod3 () { … }

Public Void getMethod4 () { … }

Class2
?

!52

Feature Envy: Refactoring Patterns (2)

Use the same method as the first example :
Extract Method or Move Method

To choose the good class we use the
following heuristic :
determine which class has most of the data and
put the method with that data

!53

Shotgun Surgery

When making one kind of change requires many
small changes to a lot of different classes

!54* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

https://sourcemaking.com/refactoring

Shotgun Surgery

Hard to find all changes needed; easy to miss an
important change

Use Move Method and Move Field to put all
change sites into one class

Put things together that change together !

If a good place to put them does not exist, create
one.

!55

Parallel Inheritance Hierarchies

Special case of Shotgun Surgery

Each time I add a subclass to one hierarchy, I need
to do it for all related hierarchies

Use Move Method 
and Move Field

!56* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

https://sourcemaking.com/refactoring

Bad Smells : Classification
The top crime

Class / method organisation

Large class, Long Method, Long Parameter List, Lazy Class, Data Class, …

Lack of loose coupling or cohesion

Inappropriate Intimacy, Feature Envy, Data Clumps, …

Too much or too little delegation

Message Chains, Middle Man, …

Non Object-Oriented control or data structures

Switch Statements, Primitive Obsession, …

Other : Comments
!57

Message Chains

A client asks an object for another object who then asks
that object for another object, etc.

Bad because client depends on the structure of the
navigation

Use Extract Method and Move Method to break
up or shorten such chains

!58* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

https://sourcemaking.com/refactoring

Middle Man

Objects hide internal details (encapsulation)

Encapsulation leads to delegation

It is a good concept but...

Sometimes it goes to far…

!59

Middle Man

Real-life example:

You ask a director whether she is free for a
meeting

She delegates the message to her secretary that
delegates it to the diary.

Everything is good… but, if the secretary has
nothing else to do, it is better to remove her !

!60

Middle Man

If a class performs only one
action, delegating work to
other classes, why does it
exist at all?

Sometimes most methods
of class just delegate to
another class

!61* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

https://sourcemaking.com/refactoring

Middle Man: Example

!62

class Person 
 Department _department; 
 public Person getManager() { 
 return _department.getManager(); 
 }

class Department 
 private Person _manager; 
 public Department (Person manager) { 
 _manager = manager; } 
 public Person getManager() { 
 return _manager(); } 
 }

The class Person is hiding the Department class.

To find a person’s manager, clients ask : 
Manager = john.getManager();

and the person then needs to ask : 
_department.getManager();

client class

Person
getManager()

Department
getManager()

Middle Man: Refactoring

!63

Remove Middle
Man

client class

Person
getDepartment()

Department
getManager()

client class

Person
getManager()

Department
getManager()

Middle Man: Refactoring

!64

Remove Middle Man…
First step : Create an accessor for the delegate.

class Person { 
 Department _department; 
 public Person getManager() { 
 return _department.getManager(); } 
 public Department getDepartment() { 
 return _department; } 
 }

client class

Person
getManager()
getDepartment()

Department

getManager()

Middle Man: Refactoring

!65

Second step : For each client use of a delegated method,
remove the method from the middle man and replace the
call in the client to call a method directly on the delegate

Last step : Compile and test.

client class

Person
getManager()
getDepartment()

Department

getManager()

client class

Person
getManager()
getDepartment()

Department

getManager()

Manager = john.getDepartment().getManager();

Bad Smells : Classification
The top crime

Class / method organisation

Large class, Long Method, Long Parameter List, Lazy Class, Data Class, …

Lack of loose coupling or cohesion

Inappropriate Intimacy, Feature Envy, Data Clumps, …

Too much or too little delegation

Message Chains, Middle Man, …

Non Object-Oriented control or data structures

Switch Statements, Primitive Obsession, …

Other : Comments
!66

Switch Statements

Switch statements (“cases”)

often cause duplication

adding a new clause to the switch requires finding 
all such switch statements throughout your code

OO has a better ways to deal with actions depending on types:
polymorphism !

Use Extract Method to extract the switch statement and then Move
Method to get it into the class where polymorphism is needed.

Then use Replace Conditional with Polymorphism after you
setup the inheritance structure.

!67* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

http://www.refactoring.com/catalog/replaceConditionalWithPolymorphism.html
https://sourcemaking.com/refactoring

Primitive Obsession

Characterised by a reluctance 
to use classes instead of  
primitive data types

The difference between classes and primitive types is
hard to define in OO

Use Replace Data Value with Object on individual
data value.

Use Extract Class to put together a group of fields
!68* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

https://sourcemaking.com/refactoring

Bad Smells : Classification
The top crime

Class / method organisation

Large class, Long Method, Long Parameter List, Lazy Class, Data Class, …

Lack of loose coupling or cohesion

Inappropriate Intimacy, Feature Envy, Data Clumps, …

Too much or too little delegation

Message Chains, Middle Man, …

Non Object-Oriented control or data structures

Switch Statements, Primitive Obsession, …

Other : Comments, …
!69

Some more bad smells

Temporary Field

Divergent Change

Speculative Generality

Alternative Classes with Different Interfaces

Incomplete Library

Refused Bequest

Comments
!70

Temporary Field

Instance variables that are only set sometimes are
hard to understand; you expect an object to need
all its variables.

Use Extract Class to put the orphan variable
and all the code that concerns it in one place.

Use Introduce Null Object when the variable is
just around to deal with the null special case.

!71

Divergent Change

When one class is commonly changed  
in different ways for different reasons.

When we make a change we want to be able to jump
to a single clear point in the system and make the
change. If you can’t do this you’ve got a bad smell.

To clean this up you identify everything that changes
for a particular cause and use Extract Class to put
them all together.

!72* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

https://sourcemaking.com/refactoring

Speculative Generality

When someone says “I think  
we may need the ability to do 
this someday ”

At this time you need all sorts of hooks and special
cases to handle things that are not required

Use Collapse Hierarchy – Inline Class –
Remove Parameter – Rename Method

!73* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

https://sourcemaking.com/refactoring

Alternative Classes with Different Interfaces

Methods in different classes  
that do the same thing but 
have different signatures.

Use Rename Method

Keep using Move Method to move behaviour
until protocols are the same

!74* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

https://sourcemaking.com/refactoring

Incomplete Library Class

When a library or framework class doesn't provide all the
functionality you need

But the solution to the problem, changing the library, is
impossible since it is read-only.

Use Introduce Foreign Method and Introduce Local
Extension

See details of these refactorings for more information on how they
solve the problem

!75

Refused Bequest

When a subclass ignores  
and doesn’t need most of  
the functionality provided  
by its superclass

Can give confusion and problems

You need to create a new sibling class and use Push
Down Method and Push Down Field to push all
the unused methods to the sibling.

!76* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

make a more concrete worked-out
example of this one since it is
related to question Q41

https://sourcemaking.com/refactoring

Comments

Are comments bad?

Of course not! In general comments are a good thing to have.

But… sometimes comments are just an excuse for bad
code

It stinks when you have a big comment which tries to explain
bad code

such comments are used as a deodorant to hide the rotten
code underneath

!77* Cartoon borrowed from https://sourcemaking.com/refactoring for didactic purposes only.

*

https://sourcemaking.com/refactoring

Comments: Example

while (i<NRULES) {
 while (j<COL-1 && !(grammar[i][j+1].equals("N"))) {
 init(first);
 if (matrix[k][l] != 'R') {
 if (cs.indexOf(q)!=-1) {

 init(second);
 for (int p=0;p < stIndex.size();indexHeadGram++){
 …

« Look which rule to choose, and after we know which
rule to take we initialize the array matrix with the correct
value (depending on the rule). We do that until we have
tested all rules and after that we … blablabla »

!78

Comments: Refactoring Patterns

Using refactorings, our first action is to remove the bad
smells in the commented code

After having done this, we often find that the comments
have become superfluous

To avoid bad smells we can often use Extract Method

Usually the name of the new method is enough then to
explain what the code does

!79

Comments: Example
public double price() {
 //price is base price – quantity discount + shipping
 return quantity * itemPrice –
 Math.max(0, quantity – 500) * itemPrice * 0.05 +
 Math.min(quantity * itemPrice * 0.1, 100.0) }

public double price() {return basePrice – quantityDiscount + shipping }

private double basePrice() {return quantity *itemPrice }

private double quantityDiscount () {return Math.max(0, quantity – 500) * itemPrice * 0.05 }

private double shipping () {Math.min(quantity * itemPrice * 0.1, 100.0) }

Extract method

!80

Comments: Refactoring Patterns

Sometimes the method is already extracted but
still needs a comment to explain what it does

One solution could be : Rename Method

!81

Comments: Example
public double price() {return basePrice – Price2 + shipping }

private double basePrice() {return quantity *itemPrice }

private double Price2 () {return Math.max(0, quantity – 500) * itemPrice * 0.05 }

private double shipping () {Math.min(quantity * itemPrice * 0.1, 100.0) }

// Price2 represent the quantityDiscount

!82

public double price() {return basePrice – quantityDiscount + shipping }

private double basePrice() {return quantity *itemPrice }

private double quantityDiscount () {return Math.max(0, quantity – 500) * itemPrice * 0.05 }

private double shipping () {Math.min(quantity * itemPrice * 0.1, 100.0) }

Rename method

Comments: Refactoring Patterns

A section of code assumes something about the
state of the program.

A comment is required to state the rule.

To avoid it, we can use Introduce Assertion

!83

Comments: Example
Public double getExpenseLimit() {

 // should have either expense limit or a primary project

 return (_expenseLimit != NULL_EXPENSE) ?

 _expenseLimit:

 _primaryProject.getMemberExpenseLimit(); }

Public double getExpenseLimit() {

 assert.isTrue (_expenseLimit != NULL_EXPENSE || _primaryProject != null);

 return (_expenseLimit != NULL_EXPENSE) ?

 _expenseLimit:

 _primaryProject.getMemberExpenseLimit(); }

Introduce Assertion

!84

Comments: Refactoring patterns
(Summary)

Bad
comments

Extract Method

Rename Method

Introduce Assertion

No more bad
comments

!85

Comments: some last remarks…

When is a comment needed / useful ?

Tip : Whenever you feel the need to write a comment, first try to
refactor the code so that any comment becomes superfluous

A good time to use a comment is when you don’t know exactly what to do

A comment is a good place to say why you did something.

This kind of information helps future modifiers, especially forgetful
ones, including yourself

A last case is to use comments when something has not been done during
development

!86

C. CONCLUSION
LINGI2252 – PROF. KIM MENS

�87

Problems with bad smells

 Only a good recipe book and nothing more

 It isn't always easy or even useful to use

Sometimes depends on context 
and personal style / taste

 Most of them are specific to OO

!88

Conclusion

To have a good habitable code:

When? Bad Smells

How? Refactorings

Bad smells are only a recipe book to help us find
the right refactoring patterns to apply

!89

�90

BAD CODE SMELLS

POSSIBLE QUESTIONS (1)

▸ Which bad smells could be corrected by applying the “Introduce Parameter Object”
refactoring? (Mention at least two different bad smells.)

▸ Which refactorings would you probably apply to address the “Large Class” bad smell?

▸ Explain and illustrate one of the following bad smells: Long Method, Feature Envy or Middle
Man.

▸ Explain the Long Parameter List bad smell in detail. Why is it a bad smell? How could it be
solved with a refactoring?

▸ What’s the relation between the Long Parameter List bad smell and the Data Clumps bad
smell?

BAD CODE SMELLS

POSSIBLE QUESTIONS (2)

▸ Explain and illustrate what the notion of “coupling” is. Should we strive for loose coupling or
tight coupling? What bad smell describes a situation that violates this principle? Name and
explain at least one.

▸ Explain and illustrate what the notion of “cohesion” is. Should we strive for low cohesion or high
cohesion? What bad smell describes a situation that violates this principle? Name and explain at
least one.

▸ Some bad smells are based on the principle that “things that change together should go
together”. Explain one of these bad smells, and the principle on which they are based, in detail.

▸ Name and explain at least one bad smell that explains a problem related to bad use of
inheritance.

▸ When talking about “Comments” in the bad smells theory session, it was stated that comments
are sometimes just there because the code is bad. Can you give an example of this and how
such comments could become superfluous simply by refactoring the code?

CLASS… IS… DISMISSED.

https://vimeo.com/35864017

