

.
X

R
d
ddiso

ifin Fow

-

r

,_, e_‘

ant .

o ..Yo. R - o

o .t..S:ra«bJ,. c&h& iy

. i (F JAE 2o s
S W bi!rtt! L T
S o ..ﬁ«éﬂ. OV RN
" l ..'iob
Sy PR RS A .
. - .ﬂa-' -
oopwfmwao-pw:.. . ¢

_ B va& \ e

a: 2oa: r.

—u.. 4)"4&4\.& /.w N/

-~ v, Vs:
x'<’<’<’4’4’4»’4.’.@&4 WA »_.

"’ —.P-.rr ’

L

Retactoring:
Improving the Design of Existing Code

One of the best references on software refactoring,
with illustrative examples 1n Java:

Refactoring: Improving the Design of Lxisting Code.
Martin Fowler. Addison Wesley, 2000. ISBN: 0201485672

See also www.refactoring.com

Overview of this presentation

. . Reractorivg
A. Refactormg ba51cs IMPROVING THE DESIGN

oF ExisTING CobE

MARTIN FOWLER
With Cantributions by Kent Beck, John Brant

B. Categories of refactoring

C. Words of warning . il

poocH M
] JACOBSOX
g RUNBAUGH

http://www.refactoring.com

A. REFACTORING BASICS ™

* Based on Chapter 2 of Marti
Refactoring: Improving the Design of Existing Code. ©Addis

Fowler’'s boo
o 20

What 1s refactoring?

A refactoring is a software transformation that
preserves the external behaviour of the software;

improves the internal structure of the software.

It 15 a disciplined way to clean up code that minimises the
chances of introducing bugs.

Definition of Retfactoring [Fowler2000)|

feiEE o chance made to the mternal strUeiEec el

software to make 1t easier to understand

| and cheaper to

modity without changing its observable

hehaviour”

[verb] “‘to restructure software by applying a series of
refactorings without changing its observable behaviour”

typically with the purpose of making the software

easier to understand and modity

Why should you retactor?

THE LIFE OF A SOFTWARE MUCH LATER...

ENGINEER .
OH MY. I'VE
DONE iT AGAiN),
WAVEN'T T 7

. e N

CLEAN) SLATE. SoLiD
FounDATIONS. THIS TIiME
T wWill BUILD THiNES THE

RAIGHT whY.

P— L

\w

Why should you retactor?

'lo improve the design ot software

THE LIFE OF A SOFTWARE
ENGINEER .

'To counter code decay (software ageing)

refactoring helps code to remain 1n shape
'To increase software comprehensibility
To find bugs and write more robust code
To increase productivity (program faster)

on a long term basis, not on a short term basis

CLEAN) SLATE. SoLiD
FOUNDATIONS, THIS TiME
T wWill BUILD THINGS THE

RIGHT whY.

MUCH LATER...

OH MmY. I'VE
DONE iT AGAIN),
HWAVERN'T T 7

Why should you retactor?

'To reduce costs of software maintenance
To reduce testing

automatic refactorings are guaranteed to be behaviour
preserving

Lo prepare for / tacilitate tuture customisations
To turn an OO application into a framework

To introduce design patterns in a behaviourally preserving way

When should you refactor?

Whenever you see the need for 1t
Do 1t all the time 1n little bursts

Not on a pre-set periodical basis

Apply the rule of three
Ist time : implement from scratch
2nd time : implement something similar by code duplication

3rd time : do not implement similar things again, but refactor

10

When should you refactor?

Refactor when adding new features or functions

Especially 1 feature 1s difficult to integrate with the existing
code

Refactor during bug fixing

It a bug is very hard to trace, refactor first to make the code
more understandable, so that you can understand better where
the bug 1s located

Refactor during code reviews

1k

When should you refactor?

Retactoring also fits naturally 1in the agile methods
philosophy

Is needed to address the principle “Maintain simplicity”

Wherever possible, actively work to eliminate
complexity from the system

By refactoring the code

12

What do you tell the manager?

When (s)he’s technically aware (s)he’ll understand
why refactoring is important.

When (s)he’s interested 1n quality, (s)he’ll understand
that refactoring will improve software quality.

When (s)he’s only interested 1n the schedule, don’t
tell that you're doing refactoring, just do it anyway.

In the end refactoring will make you more
productive.

I

When shouldn’t you retactor?

When the existing code 1s such a mess that although you could refactor
it, 1t would be easier to rewrite everything from scratch instead.

When you are too close to a deadline.

The productivity gain would appear after the deadline and thus
be too late.

However, when you are not close to a deadline you should never
put off refactoring because you don’t have the time.

Not having enough time usually 1s a sign that refactoring 1s
needed.

Ask the students what the link is with
technical debt.

Jet

Categories of refactorings

Small refactorings Big refactorings
(de)composing methods Tease apart inheritance
moving features between objects Extract hierarchy
organising data Convert procedural design to objects

simplitying conditional expressions Separate domain from presentation

dealing with generalisation

simplitying method calls

16

Small retactorings

(de)composing methods [9 refactorings]

moving features between objects [8 refactorings]
organising data [16 refactorings]

simplitying conditional expressions |8 refactorings]
dealing with generalisation [12 refactorings]

simplitying method calls [15 refactorings]

J

o Lk LS AR R DA A o

Small Refactorings :
(de)composing methods

Extract Method

Inline Method Legend:

Inline Temp

Replace Temp With Query

Introduce Explaining Variable

Split Temporary Variable
Remove Assignments to Parameter
Replace Method With Method Object

Substitute Algorithm

= we will zoom in on these

= home reading

18

(De)composing methods:
I. Extract Method

What? When you have a fragment of code that can be grouped together,

turn 1t into a method with a name that explains the purpose of the

method
Why? improves clarity, removes redundancy
Example:
public void accept (Packet p) { public void accept (Packet p) {
if ((p.getAddressee() == this) &s E-thd s she St ECTE s rane -t e S ey

else super.accept(p); }

CERLE e B L S e SIS R TR B, public boolean isDestFor (Packet p) {

AP Sl P e G e

e S ET
else - ((p.getAddressee () == this) &&
super.accept(p); 1} 6 501 = e 2 1 (o o (6O Mok 5 = W BB ON 8 = T e o o

Beware of local variables !

13

(De)composing methods :
2. Inline Method

(Opposite of Extract Method)

What? When a method’s body is just as clear as its name, put the method’s
body into the body of its caller and remove the method

Why? lo remove too much indirection and delegation

Example:

int getRating () {
return moreThanFivelateDeliveries|() ;

} int getRating () {
- return (numberOfLateDeliveries > 5);

}

boolean moreThanFivelateDeliveries () {

return _numberOfLateDeliveries e I

}

20

(De)composing methods :
3. Inline 'lemp

What? When you have a temp that 1s assigned once with a simple
expression, and the temp 1s getting 1n the way of refactorings,
replace all references to that temp with the expression.

Why? (Part of Replace Temp with Query refactoring)

Example:

double basePrice = anOrder.basePrice();

i B s B SE SR el e S s R)
- return (anOrder. basePrice ()

S B

21

(De)composing methods :
4. Replace Temp with Query

What? When you use a temporary variable to hold the result of an
expression, extract the expression into a method and replace all
references to the temp with a method call

Why? Cleaner code

Example:

e L L e LT e = T eTPT I Ce

s EaEPre rar > 1M00.07)

pesrriRReMs g seREree~X =095
else

AT AT Sl SRS PR e ek <k el § SRR R

—)

if (basePrice() > 1000)

T et U e P e e R S S S Ea
else

return basePrice() * 0.98;

double basePrice () {
L UEN ~~ UdNEl s Clibahe e

}

2

(De)composing methods :
5. Introduce Explaining Variable

What? When you have a complex expression, put the result of the
(parts of the) expression 1in a temporary variable with a name
that explains the purpose

Why? Breaking down complex expressions for clarity

Example:

LI NN eaer s ol Dper Caise-Ct T NdeXO L (TMACH) 2> =g
A e o ppe ECas e (rindexOf (N IR > = 1) 586
wasInitialized () && resize > 0)

{

e SECI

) -

final boolean isMacOs =- platform.toUpperCase{)-: index@F(+ MACE)j==—snculss
ssprEMEEoetrean- IS tEBrowser: = browser: toUpperCase: () rirnae @ sl
final boolean wasResized = resize > 0;

if (isMacOs && isIEBrowser && wasInitialized() && wasResized) {

& B ETTEN

}

2

(De)composing methods :
6. Split Temporary Variable

What? When you assign a temporary variable more than once,
but 1t 1s not a loop variable nor a collecting temporary
variable, make a separate temporary variable for each
assignment

Why? Using temps more than once 1s confusing

Example:

clerdionker e e i i AW O [e S T K o) final double perimeter =

5 TSl (MDY b2rn| OB LA 3] sl Wi w1 1O 2R i L (S 3 MO e - LO A0
et S i e WA A T - System.outprinthn-(perimeEci)=

S S C B DA R At A S R e =) 1 &0 Fingladoublesare ot =satinesheiiattc st i S kil

SV SIEE NS @ U prrisrMe s enacics s

24

(De)composing methods :
/. Remove Assignments 1o Paramete

What? When the code assigns to a parameter,
use a temporary variable instead

Why? Lack of clarity and confusion between “pass by value”
and “pass by reference”

Example:

oo E Y Sia Il s el el s N O UL C ek LN £ - quant i €57,
int yearToDate) {
T0 A e I ANO T HEAVRE s 2O i 1 8 § @1 B V= Tl By o 0
M@ EbEs @ O BEr s HER brrvs Tat-dirscount: (NP e ok - e e e

int yearToDate) {
- int result = inputVal;
1-f--finputVal-:>s250) s ne Sl
o MORE S CODESE R St

25

(De)composing methods :
8. Replace Method with Method Objes

What? When you have local variables but cannot use
extract method, turn the method 1nto its own object,
with the local variables as its fields

Why? LExtracting pieces out of large methods makes things more
comprehensible

Example:

PriceCalculator

Order Order |- Nl
‘ primaryBasePrice

price() « price() « 1 secondaryBasePrice
i compute()

double primaryBasePrice;

double secondaryBasePrice; return new PriceCalculator(this). compute()
// long computation

/

26

(De)composing methods :
9. Substitute Algorithm

What? When you want to replace an algorithm with a clearer
alternative, replace the body of the method with the
new algorithm

Why? ‘To replace complicated algorithms with clearer ones

Example:

SaEEspcmsROUndPeBSon (String [l people) {
iR SHERS MRt =< peop le . length; - 1++) {
TE S e ETEen ok e T RS e A BN XSl (RS o) € i B4 R B |
T o b e S AN G e
}
sl e @ Pl b equal s (~-Jack”) -) {
o= e WA = el e

}

SHEIEILIANG AR ON R KO HEYSH ey @1 Ak oo s sl e orei) e = |
st tcandidatesy = Array. aslitstilinew Str ks udio i i et)

- Fora(ERt~1—=20; -1~ < people . lengths=bit+)
Ifv(candidates i-]~—~—contains—+{peopd-e-rkdd-)

(A E M I o= VaT o b e e

27!

Small retactorings

(de)composing methods [9 refactorings]

moving features between objects [8 refactorings]
organising data [16 refactorings]

simplitying conditional expressions |8 refactorings]
dealing with generalisation [12 refactorings]

simplitying method calls [15 refactorings]

28

Ol Ot HORG s

Small Refactorings :

moving teatures between objects

Move Method
Move Field
Extract Class
Inline Class
Hide Delegate

Remove Middle Man

Introduce Foreign Method

Introduce Local Extension

= we will zoom in on these

= home reading

2

Mowving teatures between objects :

1,2. Move Method / Field

What? When a method (resp. field) 1s used by or uses more features of
another class than its own, create a similar method (resp. field)
in the other class; remove or delegate original method (resp. field)

and redirect all references to 1it.

Why? Lssence of refactoring

Example:
Class 1 Class 1
Class 2 - Class 2
aMethod()
aMethod()

30

Mowving teatures between objects :
3. Extract Class

What? When you have a class doing work that should be done by two,
create a new class and move the relevant fields and methods to
the new class

Why? Large classes are hard to understand

Example:

Person

name Person PhoneNumber

officeAreaCode 1 Lomd
officeNumber name P o areaCode

homeAreaCode number
homeNumber getOfficePhone

getHomePhone getPhoneNumber

getOfficePhone
getHomePhone

31

Mowving teatures between objects :

4. Inline Class

What? When you have a class that does not do very much, move

all 1ts features 1nto another class and delete it

Why? To remove useless classes (as a result of other refactorings)

Example:
Person ofice. | PhoneNumber Person
phone | areaCode name
name 1 1L.number - officeAreaCode
getPhoneNumber() officeNumber
getPhoneNumber() getPhoneNumber()

o

Mowving teatures between objects :

5. Hide Delegate

What? When you have a client calling a delegate class of an object,

create methods on the server to hide the delegate

Why? Increase encapsulation

Example:
Client Class Client Class
: i ;
Person Department Person ... Department

getDepartment() getManager() getManager() getManager()

Sl

Mowving teatures between objects :

6. Remove Middle Man

What? When a class 1s doing too much simple delegation, get the
client to call the delegate directly

Why? To remove too much indirection (as a result of other

refactorings)
Example:
Person
Client Class [> - el Client Class -~ :
getManager()
3 5 H
: Person Department
Department getDepartment() getManager()

34

Mowving teatures between objects :

/. Introduce Foreign Method

What? When a server class needs an additional method, but you
cannot modify the class, create a method 1n the client
class with an instance of the server class as 1ts first argument

Why? 'lo introduce one additional service

Example:

Date newStart = new Date (previousEnd.getYear(),
ERcrareisERdisgetMen th-C) - previouwskEndrgetDa te-(5) —hesi)e

Date newStart = nextDay(previeoushndy)=:

- | e YA B s HBk (@ B e wAIEHEIDic e (e Ee an@o)
return new Date (arg.getYear(),

arg.getMonth (), arg.getDate ()

b e

20

Mowving teatures between objects :
8. Introduce Local Extension

What? When a server class needs several additional methods but you cannot
modify the class, create a new class containing the extra methods;
make the extension class a subclass or wrapper

Why? 'lo introduce several additional services

Example:

Client Class -

Date

MfDate

nextDayDate(Date): Date

nextDay(): Date

36

Small retactorings

(de)composing methods [9 refactorings]

moving features between objects [8 refactorings]
organising data [16 refactorings]

simplitying conditional expressions |8 refactorings]
dealing with generalisation [12 refactorings]

simplitying method calls [15 refactorings]

o

B ST OV s

Small Refactorings :
organising data

Encapsulate field

Replace data value with
object

Change value to reterence
Change reference to value
Replace array with object
Duplicate observed data

Change unidirectional
assoclation to bidirectional

8. Change bidirectional

assoclation to unidirectional

9. Replace magic number with
symbolic constant

10. Encapsulate collection
11. Replace record with data class
12. Replace subclass with fields

13-16. Replace type code with
class / subclass / state /

strategy =

Organising Data :
I. Encapsulate Field

What? There is a public field. Make it private and provide accessors.

Why? Encapsulating state increases modularity, and facilitates code reuse

and maintenance.
When the state of an object 1s represented as a collection of private

variables, the internal representation can be changed without
moditying the external interface

Example:
private String name;
public String getName () {
Bl e S tngl-name - s 8 1 2 e o B a2 A
public void setName (String s) {
Ehirsaname s =rsnie

Organising Data :
2. Replace Data Value with Object

private String contents;
public String getContents () {
EC kB ER—th1-5.contents; -}
ptlistREes=zesid setContents (St rrng 's) = {
I I A T S A e S W g B e P

private Document doc;

public String getContents () ({
return: this.docr-getContteni=ch=sis

pubilic: void-setContents (SicirRiciscste
s~ docrgse ECorrefrsaiite =

‘ public class Document ({
private String contents;

public String getContents () {
R SR A A e @ S e O AN B N A e e -
publiacsvoad-setContentt s cimrrncEacs]

T AT ER by ST AR AT s F e

Organising Data :
13. Replace lype Gode with Subclas

PROBLEM
YOU HAVE A CODED TYPE FIELD OF WHICH THE VALUES DIRECTLY
AFFECT TRIGGER DIFFERENT BEHAVIOUR IN CONDITIONALS.

What? An immutable type code affects the behaviour of a class |
Example:

Employee Employee
const Engineer=0

const Salesman=1 ‘ /\
const Manager=2

type:Int

Engineer| | Salesman|| Manager

SOLUTION
CREATE SUBCLASSES FOR EACH VALUE OF THE CODED TYPE.
EXTRACT RELEVANT BEHAVIORS FROM THE ORIGINAL CLASS T0 THESE SUBCLASSES.
REPLACE THE CONTROL FLOW CODE WITH POLYMORPHISM. X

Organising Data :
15,16. Replace lype Gode with State/Str

When? If subclassing cannot be used, e.g. because of dynamic

type changes during object lifetime (e.g. promotion of employees)

Example:

Employee EmployeeType
Employee /\

const Engineer=0 -
const Salesman=1

const Manager=2
type:Int

Engineer| | Salesman|| Manager

Makes use of state pattern or strategy design pattern

Organising Data :
12. Replace Subclass with Fields

What? Subclasses vary only in methods that return constant data

Solution: Change methods to superclass fields and eliminate subclasses

Example:
Person
é Person
- sex: [M, F]
Male Female

Similar to replace inheritance with aggregation

Small retactorings

(de)composing methods [9 refactorings]

moving features between objects [8 refactorings]
organising data [16 refactorings]

simplitying conditional expressions [8 refactorings]
dealing with generalisation [12 refactorings]

simplitying method calls [15 refactorings]

44

OO PR T ORI e

Small Refactorings :
simplitying conditional expressions

Decompose conditional

Consolidate conditional expression
Consolidate duplicate conditional fragments
Remove control flag

Replace nested conditional with guard clauses
Replace conditional with polymorphism
Introduce null objects

Introduce assertion

45

Small retactorings

(de)composing methods [9 refactorings]

moving features between objects [8 refactorings]
organising data [16 refactorings]

simplitying conditional expressions |8 refactorings]
dealing with generalisation [12 refactorings]

simplitying method calls [15 refactorings]

46

S O e el o0

Small Refactorings :
dealing with generalisation
Push down method / field
Pull up method / field / constructor body
Extract subclass / superclass / intertace
Collapse hierarchy
Form template method

Replace inheritance with delegation (and vice versa)

47

Dealing with Generalisation:

1. Push Down Method

When behaviour on a superclass 1s relevant only for some of its subclasses,

move 1t to those subclasses

Employee Employee

getQuota Z>

A —

Salesman

Engineer

Salesman Engineer getQuota

438

Dealing with Generalisation:

2. Pull Up Method

Simple variant: look for methods with same name in subclasses that do not appear in
superclass

More complex variant: do not look at the name but at the behaviour of the method

It the method that 1s being pulled up already exists in the superclass as an abstract method,
make 1t concrete with the common behaviour

Printserver

Printserver

A accept

ASCIIPrinter PSPrinter

/N

accept accept ASClIPrinter| | PSPrinter

49

Dealing with Generalisation:
3. Eixtract Superclass

When you have 2 classes with similar features

PrintServer

FileServer

Outputserver

/N

Printserver

Fileserver

50

Small retactorings

(de)composing methods [9 refactorings]

moving features between objects [8 refactorings]
organising data [16 refactorings]

simplitying conditional expressions |8 refactorings]
dealing with generalisation [12 refactorings]

simplitying method calls [15 refactorings]

e

Pt ST O

Small Refactorings :
simplitying method calls

Rename method

. Add parameter

Remove parameter

Separate query from modifier
Parameterise method

Replace parameter with method

Replace parameter with explicit
methods

Preserve whole object

9. Introduce parameter object
10. Remove setting method

11. Hide method

12. Replace constructor with factory
method

13. Encapsulate downcast
14. Replace error code with exception

15. Replace exception with test

o

T

Simplitying method calls :
9. Introduce Parameter Object

PROBLEM

YOUR METHODS CONTAIN A REPEATING GROUP OF PARAMETERS.

Customer

amountlnvoicedIn(from:Date,to:Date)
amountReceivedIn(from:Date,to:Date)
amountOverdueln(from:Date,to:Date)

—)

SOLUTION

Customer

amountinvoicedIn(r:DateRange)
amountReceivedIn(r:DateRange)
amountOverdueln(r:DateRange)

DataRange

from : Date
to : Date

REPLACE THESE PARAMETERS WITH AN OBJECT AND USE THAT OBJECT AS PARAMETER INSTEAD.

b3

Simplifying method calls:
14. Replace Error Code with Exception

What? When a method returns a special code to indicate an
error, throw an exception instead
Why? C(learly separate normal processing from error processing

Example:

int withdraw(int amount) {
I I e AN Cer)
IS0 B 9 i
else
el @ S —= ¢ MO
7= AW F o) QEeE SR

void withdraw(int amount) throws BalanceException {

- if (amount > balance) throw new BalanceException () ;

balance -= amount;

}

54

Categories ot refactorings

(according to [Fowler2000])

Small refactorings Big refactorings
(de)composing methods [9] Tease apart inheritance
moving features between objects [8] Extract hierarchy
organising data [16] Convert procedural design to objects

simplitying conditional expressions [3] Separate domain from presentation

dealing with generalisation [12]

simplifying method calls [13]

O

Big refactorings

Require a large amount of time (> | month)

Require a degree of agreement among the
development team

No mnstant satistaction, no visible progress

56

Big Refactorings

lease apart inheritance
e EXiract hierarchy
. Convert procedural design to objects

. deparate domain from presentation

Big refactorings:
I. Tease apart inheritance

Problem

A tangled inheritance hierarchy that is doing 2 jobs at
once

Solution

Create 2 separate hierarchies and use delegation to invoke
one from the other

58

Big refactorings:
I. Tease apart inheritance

Approach
Identity the different jobs done by the hierarchy.
Extract least important job 1nto a separate hierarchy.
Use extract class to create common parent of new hierarchy.
Create appropriate subclasses.

Use move method to move part of the behaviour from the
old hierarchy to the new one.

50

Big refactorings:
I. Tease apart inheritance

Window

Full Iconised WindowImpl [Window

I I > I I

FullXWin || FullMSWin IconXWin IconMSWin XWin MSWin Full Iconised

60

Big refactorings:
I. Tease apart inheritance

Related design patterns
Bridge

decouples an abstraction from its
implementation so that the two can vary
independently

Strategy / Visitor / Iterator / State

61

Big refactorings:
2. Extract hierarchy

Problem

An overly-complex class that 1s doing too much work,
at least in part through many conditional statements.

Solution

lurn class into a hierarchy where each subclass
represents a special case.

62

Approach

Big refactorings:
2. Extract hierarchy

Create a subclass for each special case.

Use one of the following refactorings to return the appropriate subclass

for each variation:

replace constructor with factory method

replace type code with subclasses

replace type code with state/strategy

Take methods with conditional logic and apply:

replace conditional with polymorphism

63

Big refactorings:
2. Extract hierarchy (example)

Calculating electricity bills.

Lots of conditional logic needed to cover many difterent cases:

difterent charges for summer/winter Customer

different tax rates

difterent billing plans for personal / business / government|/ ...

A 4

reduced rates for persons with

: = . : Billing Scheme
disabilities or social security

64

Big refactorings:
3. Gonvert procedural design
into objects

Problem
You have code written in a procedural style.
Solution

Turn the data records into objects, break up the behaviour, and
move the behaviour to the objects.

Smaller refactorings used

extract method, move method, ...

65

Big refactorings:
4. Separate domain
from presentation

Goal

Change a two-tier design (user intertace/database) into a a
three-tier one (Ul/business logic/database).

Solution
Separate domain logic into separate domain classes.

Smaller refactorings used

extract method, move method/field, duplicate observed data, ...

66

CODE REFACTORING — REFACTORING TOOLS

68

AUTOMATED CODE REFACTORING TOOLS

Available for all major programming languages
(and OO programming languages in particular)

Java : IntelliJ IDEA, Eclipse, NetBeans, JDeveloper, ...

JavaScript : WebStorm, Eclipse, ...
C++ : VisualStudio, Eclipse, ...
ObjectiveC and SWIFT : XCode
.NET : VisualStudio

Smalltalk, PHP, Ruby, Python, C#, Delphi, ...

CODE REFACTORING — REFACTORING TOOLS

69

LIMITATIONS OF MOST REFACTORING TOOLS

Only support for primitive refactorings
class refactorings
add (sub)class to hierarchy, rename class, remove class
method refactorings

add to class, rename, remove, push down, pull up, add parameter, move to
component, extract code

variable refactorings

add to class, rename, remove, push down, pull up, create accessors, abstract
variable

Often no support for higher-level refactorings

CODE REFACTORING — REFACTORING TOOLS

REFACTORING IN ECLIPSE

The refactoring tool in Eclipse supports a number of
transformations described in Martin Fowler's book

Refactoring can be accessed via the Refactor menu.

Refactoring commands are also available from the context
menus in many views or appear as quick assists.

http://help.eclipse.org/neon/topic/org.eclipse.jdt.doc.user/reference/ref-menu-refactor.htm
http://help.eclipse.org/neon/topic/org.eclipse.jdt.doc.user/reference/ref-java-editor-quickassist.htm

CODE REFACTORING — REFACTORING TOOLS

SUPPORTED REFACTORING ACTIONS IN ECLIPSE (2016)

Rename, Move, Change Method Signature

Extract Method, Extract Local Variable, Extract Constant

Inline, Move Type to New File, Use Supertype Where Possible
Convert Anonymous Class to Nested, Convert Local Variable to Field
Extract Superclass, Extract Interface, Extract Class

Push Down, Pull Up, Encapsulate Field

Introduce Parameter Object, Introduce Indirection

Introduce Factory, Introduce Parameter

Generalize Declared Type , Infer Generic Type Arguments

(and more)

Java - Node.java - /Applications/Programming/eclipse/workspace - Eclipse Platform

1B ¥ &

public class Node {

TNATYY

' blabla

~ ||'Fac

| LAN

| ‘LANwithTests

8 (default package)
P [J) ExceptionTests.
J] LAN.java

J] LANTests.ja*
J] Node.java

J] NodeTest.ja
4] Packet.java
J] PacketTest.|
J] Printserver.j
J] PrintserverT
4] UnknownDe
] Workstation,
4] Workstation’
il JRE Systemn Librz
ﬁ}'&junit.jar - /Appl!
‘Test

= >

B AL GBS SO Al AL G Ao B0

v

Package Ex... lNavi

public String name;

public Node nextNode;

public Node(String s) { Open Declaration
name = S;j

} Open Type Hierarchy
Open Call Hierarchy
pumtf, "2“;?5“‘,‘&29 25 f_’?d‘?,_'_‘?.t Open Super Implementation
Gk wevieligs ne """ Show in Package Explorer

Rename...

Move...

Change Method Signature...
Convert Anonymous Class to Nested... Source
Move Member Type to New File...

Cut

Copy
Paste

Pull Up... Local History

Push Down... Search
Extract Interface...
Use Supertype Where Possible...

Inline...

Extract Method...
Extract Local Variable...
Extract Constant...

] MysS... '@ Tran...' @) Calc... ' @1 Co... '@ Mai... | N... X | J] Pac... lJ':'J_] Mes... 4|

Convert Local Variable to Field... fetrics View) Dependency Graph V...

|Problems

Encapsulate Field... |9 18

-y Il 1721 y -t n ! - r » 1 =~ faorlinco 'wawwnsrremyaro rrrlimenn | +*T*arm
java - Node.java - JApplications/Programming/eclipse/workspace - Eclipse Platiorm

Package Explorer + x || [J] MyS... '@ Tran...' B Calc... ' B Co... ! @) Mai... l U] N... X | J] Pac... |£’l_] Mes... 4)

T I = public class Node {
— public String name;

‘blabla

public Node nextNode;

‘Fac ‘
Self Encapsulate Fiel
LAN © P Y

'LANwithTests Getter name: getName
f# (default g
J] Exce} Setter name: setName

] LAN.J ————— ——
3] LANT Insert new methods after: Node(String, Node)

] N°d4 Field access in declaring class:) use setter and getter _) keep field reference
J] Node

J] Packs

J] Packt

] Prints

4] Prints / Preview > > / Cancel \ (-—'Ol('—"

J] Unkn

J] Work STtomye

g WorkstationTes|
il JRE System Library |
ﬁ}zjunit.jar - [Applicat]

‘Test v

p—

] 4 b

Package Ex... |Navigator || Tasks |Conso|e | Search | Call Hierarchy | Metrics View | Dependency Graph V... | Problems

l l\‘l-;b-\kln ICM'\" D om o> 2m ol |1h N v |

(@, Self Encapsulate Field

Changes to be performed

W > g8 Node.java - LANwithTests

W > 8 workstation.java - LANwithTests
™ P> #@NodeTestjava - LANwithTests
W > oD packetTest.java - LANwithTests

f

Java Source Compare

Original Source Refactored Source

i public class Node { public class Node |{
[__public String name; | private String name;

public Node nextNode; public Node nextNode;

public Node(String s) { public Node(String s) {
name = s; setName(s):

| §

public Node(String s, Node n) { public Node(String s, Node n) {
this(s); //calls the constructor Node(! this(s); //calls the constructor No
nextNode = n; nextNode = n;

Cancel \ HOK'—’*)

CODE REFACTORING — WORDS OF WARNING

76

A WORD OF WARNING (1)

Know what you are doing

If not applied well, refactoring may decrease quality rather
than improve it

CODE REFACTORING — WORDS OF WARNING 77

A WORD OF WARNING (1)

"Bad smells” are symptoms that something is wrong

Refactoring are supposed to remove “bad smells”

SMELLS LIKE A
T00 “LARGE CLASS”

L

name EXTRACT PhoneNumber
officeAreaCode CLASS ohone

officeNumber name N areaCode
homeAreaCode U number

getOfficePhone
getHomePhone

homeNumber

getOfficePhone
getHomPhone

getPhoneNumber

SMELLS LIKE A
T00 ABSTRACT CLASS

HumanBeing

EXTRACT

name SUPERCLASS

gender

name

getOfficePhone
getHomePhone

getOfficePhone
getHomePhone

i A

CODE REFACTORING — WORDS OF WARNING

79

NEXT SESSION: INTRODUCTION TO “BAD SMELLS”

Bad code smells

indicate that your code is ripe for refactoring
Refactoring is about

how to change code
Bad smells are about

when to modify it

CODE REFACTORING — WORDS OF WARNING

80

A WORD OF WARNING (2)

Independently applied refactorings can introduce subtle
merge conflicts

CREATE
SUBCLASS

REFACTORING CONFLICT :

Company _
In the new version, Safe should not

be handled by Bank, but by Agency

CLASS

. o teaming abiec tiyes :

l

9 = Definition and d,#ereﬂce
‘: 0 L

beme

CODE REFACTORING

POSSIBLE QUESTIONS

25.Give a definition of refactoring in your own words
and illustrate it with a concrete example of a refactoring.

26.Explain why it is important to refactor.
27.Explain when (= at what moment) refactoring should (or should not) be performed.

28.Like refactoring, performance optimisation does not usually change the behaviour of code (other
than its speed); it only alters the internal structure. So how does it differ from refactoring?

29.Explain and illustrate one of the following refactorings in detail:

» Extract Method, Move Method, Extract Class, Replace Type Code with Subclass, Replace
Subclass with Fields, Pull Up Method, Introduce Parameter Object

30.Give a concrete example of how a refactoring could accidentally reduce quality.

31.Give a concrete example of how to independently applied refactorings could accidentally
introduce a subtle merge conflict.

CLASS... IS... DISMISSED.

-“- MADRAN / ¢T?““i"

2N

I

o §]
“d\ —
2 S

— t)'.‘—

- ‘—‘. - -~

https://vimeo.com/35864017

