
SOFTWARE MAINTENANCE 
& EVOLUTION

LINGI2252 – PROF. KIM MENS

CODE REFACTORING

LINGI2252 – PROF. KIM MENS

* Slides mostly based on Martin Fowler’s book: 
Refactoring: Improving the Design of Existing Code. ©Addison Wesley, 2000

*

Refactoring:  
Improving the Design of Existing Code

One of the best references on software refactoring,  
with illustrative examples in Java:

Refactoring: Improving the Design of Existing Code.  
Martin Fowler. Addison Wesley, 2000. ISBN: 0201485672

See also www.refactoring.com

Overview of this presentation

A. Refactoring basics

B. Categories of refactoring

C. Words of warning

3

http://www.refactoring.com

A. REFACTORING BASICS

LINGI2252 – PROF. KIM MENS

* Based on Chapter 2 of Martin Fowler’s book: 
Refactoring: Improving the Design of Existing Code. ©Addison Wesley, 2000

*

What is refactoring?
A refactoring is a software transformation that

preserves the external behaviour of the software;

improves the internal structure of the software.

It is a disciplined way to clean up code that minimises the
chances of introducing bugs.

5

Definition of Refactoring [Fowler2000]

[noun] “a change made to the internal structure of
software to make it easier to understand and cheaper to
modify without changing its observable behaviour”

[verb] “to restructure software by applying a series of
refactorings without changing its observable behaviour”

typically with the purpose of making the software
easier to understand and modify

6

X

Why should you refactor?

Why should you refactor?

To improve the design of software

To counter code decay (software ageing)

refactoring helps code to remain in shape

To increase software comprehensibility

To find bugs and write more robust code

To increase productivity (program faster)

on a long term basis, not on a short term basis

8

Why should you refactor?

To reduce costs of software maintenance

To reduce testing

automatic refactorings are guaranteed to be behaviour
preserving

To prepare for / facilitate future customisations

To turn an OO application into a framework

To introduce design patterns in a behaviourally preserving way

9

When should you refactor?

Whenever you see the need for it

Do it all the time in little bursts

Not on a pre-set periodical basis

Apply the rule of three

1st time : implement from scratch

2nd time : implement something similar by code duplication

3rd time : do not implement similar things again, but refactor

10

When should you refactor?

Refactor when adding new features or functions

Especially if feature is difficult to integrate with the existing
code

Refactor during bug fixing

If a bug is very hard to trace, refactor first to make the code
more understandable, so that you can understand better where
the bug is located

Refactor during code reviews

11

When should you refactor?

Refactoring also fits naturally in the agile methods
philosophy

Is needed to address the principle “Maintain simplicity”

Wherever possible, actively work to eliminate
complexity from the system

By refactoring the code

12

What do you tell the manager?

When (s)he’s technically aware (s)he’ll understand
why refactoring is important.

When (s)he’s interested in quality, (s)he’ll understand
that refactoring will improve software quality.

When (s)he’s only interested in the schedule, don’t
tell that you’re doing refactoring, just do it anyway.

In the end refactoring will make you more
productive.

13

When shouldn’t you refactor?

When the existing code is such a mess that although you could refactor
it, it would be easier to rewrite everything from scratch instead.

When you are too close to a deadline.

The productivity gain would appear after the deadline and thus
be too late.

However, when you are not close to a deadline you should never
put off refactoring because you don’t have the time.

Not having enough time usually is a sign that refactoring is
needed.

14

Ask the students what the link is with
technical debt.

B. CATEGORIES OF REFACTORINGS

LINGI2252 – PROF. KIM MENS

* Based on Martin Fowler’s book: 
Refactoring: Improving the Design of Existing Code. ©Addison Wesley, 2000

*

Categories of refactorings

Small refactorings

(de)composing methods

moving features between objects

organising data

simplifying conditional expressions

dealing with generalisation

simplifying method calls

Big refactorings

Tease apart inheritance

Extract hierarchy

Convert procedural design to objects

Separate domain from presentation

16

Small refactorings

(de)composing methods [9 refactorings]

moving features between objects [8 refactorings]

organising data [16 refactorings]

simplifying conditional expressions [8 refactorings]

dealing with generalisation [12 refactorings]

simplifying method calls [15 refactorings]

17

Small Refactorings :  
(de)composing methods

1. Extract Method

2. Inline Method

3. Inline Temp

4. Replace Temp With Query

5. Introduce Explaining Variable

6. Split Temporary Variable

7. Remove Assignments to Parameter

8. Replace Method With Method Object

9. Substitute Algorithm
18

= we will zoom in on these

= home reading

Legend:

(De)composing methods:  
1. Extract Method

19

What? When you have a fragment of code that can be grouped together,
 turn it into a method with a name that explains the purpose of the
 method
Why? improves clarity, removes redundancy
Example:

public void accept(Packet p) {  
 if ((p.getAddressee() == this) &&  
 (this.isASCII(p.getContents())))  
 this.print(p);  
 else  
 super.accept(p); }

public void accept(Packet p) {
 if this.isDestFor(p) this.print(p);
 else super.accept(p); }
public boolean isDestFor(Packet p) {
 return
 ((p.getAddressee() == this) &&
 (this.isASCII(p.getContents()))); }

Beware of local variables !

(Opposite of Extract Method)
 
What? When a method’s body is just as clear as its name, put the method’s
 body into the body of its caller and remove the method
Why? To remove too much indirection and delegation
Example:

int getRating(){
 return moreThanFiveLateDeliveries();
}  

boolean moreThanFiveLateDeliveries(){
 return _numberOfLateDeliveries > 5;
}

(De)composing methods :  
2. Inline Method

20

int getRating(){
return (_numberOfLateDeliveries > 5);
}

(De)composing methods :  
3. Inline Temp

21

What? When you have a temp that is assigned once with a simple
 expression, and the temp is getting in the way of refactorings,  
 replace all references to that temp with the expression.  

Why? (Part of Replace Temp with Query refactoring)
 
Example:
	

return (anOrder. basePrice() > 100)

double basePrice = anOrder.basePrice();
return (basePrice > 100)

(De)composing methods :  
4. Replace Temp with Query

22

What? When you use a temporary variable to hold the result of an
 expression, extract the expression into a method and replace all 
 references to the temp with a method call
Why? Cleaner code

Example:

	

double basePrice = _quantity * _itemPrice;
if (basePrice > 1000)
 return basePrice * 0.95;
else
 return basePrice * 0.98;

if (basePrice() > 1000)
 return basePrice() * 0.95;
else
 return basePrice() * 0.98;
…
double basePrice(){
 return _quantity * _itemPrice;
}

(De)composing methods :  
5. Introduce Explaining Variable

23

What? When you have a complex expression, put the result of the 
 (parts of the) expression in a temporary variable with a name
 that explains the purpose
Why? Breaking down complex expressions for clarity
Example:

if ((platform.toUpperCase().indexOf(“MAC”) > -1) &&
 (browser.toUpperCase().indexOf(“IE”) > -1) &&
 wasInitialized() && resize > 0)
{
//ACTION
}

final boolean isMacOs = platform.toUpperCase().indexOf(“MAC”) > -1;
final boolean isIEBrowser = browser.toUpperCase().indexOf(“IE”) > -1;
final boolean wasResized = resize > 0;

if (isMacOs && isIEBrowser && wasInitialized() && wasResized){
//ACTION
}

(De)composing methods :  
6. Split Temporary Variable

24

What? When you assign a temporary variable more than once,
 	 but it is not a loop variable nor a collecting temporary
	 variable, make a separate temporary variable for each
	 assignment
Why? Using temps more than once is confusing

Example:

	

double temp = 2 * (_height + _width);
System.out.println (temp);
temp = _height * _width;
System.out.println (temp);

final double perimeter =
 2 * (_height + _width);
System.out.println (perimeter);
final double area = _height * _width;
System.out.println (area);

(De)composing methods :  
7. Remove Assignments To Parameter

25

What? When the code assigns to a parameter,
 use a temporary variable instead
Why? Lack of clarity and confusion between “pass by value”
 and “pass by reference”
 
Example:

	

int discount (int inputVal, int quantity,
int yearToDate){
 if (inputVal > 50) inputVal -= 2;
 ... MORE CODE HERE ... int discount (int inputVal, int quantity,

int yearToDate){
 int result = inputVal;
 if (inputVal > 50) result -= 2;
 ... MORE CODE HERE ...

(De)composing methods :  
8. Replace Method with Method Object

26

What? When you have local variables but cannot use
	 extract method, turn the method into its own object,
	 with the local variables as its fields
Why? Extracting pieces out of large methods makes things more
 comprehensible
Example:

	

Order

price()

PriceCalculator
primaryBasePrice
secondaryBasePrice
compute()

return new PriceCalculator(this). compute()

1

Order

price()

double primaryBasePrice;
double secondaryBasePrice;
// long computation

(De)composing methods :  
9. Substitute Algorithm

27

What? When you want to replace an algorithm with a clearer
 alternative, replace the body of the method with the
 new algorithm
Why? To replace complicated algorithms with clearer ones
Example:

	

String foundPerson(String[] people){
 for (int i = 0; i < people.length; i++){
 if (people[i]. equals (“John”)) {
 return “John”;
 }
 if (people[i]. equals (“Jack”)) {
 return “Jack”;
 }
 }
}

String foundPerson(String[] people){
 List candidates = Array.asList(new String[] {“John”, “Jack”})
 for (int i = 0; i < people.length; i++)
 if (candidates[i]. contains (people[i]))
 return people[i];
}

Small refactorings

(de)composing methods [9 refactorings]

moving features between objects [8 refactorings]

organising data [16 refactorings]

simplifying conditional expressions [8 refactorings]

dealing with generalisation [12 refactorings]

simplifying method calls [15 refactorings]

28

Small Refactorings :  
moving features between objects

1. Move Method

2. Move Field

3. Extract Class

4. Inline Class

5. Hide Delegate

6. Remove Middle Man

7. Introduce Foreign Method

8. Introduce Local Extension

= we will zoom in on these

= home reading

Legend:

29

Moving features between objects : 
1,2. Move Method / Field

30

What? When a method (resp. field) is used by or uses more features of
 another class than its own, create a similar method (resp. field)  
 in the other class; remove or delegate original method (resp. field) 
 and redirect all references to it.  

Why? Essence of refactoring 

Example:

	

Class 1

aMethod()

Class 2
Class 1

Class 2

aMethod()

Moving features between objects : 
3. Extract Class

31

What? When you have a class doing work that should be done by two,
 create a new class and move the relevant fields and methods to  
 the new class

Why? Large classes are hard to understand

Example:	

	

PhoneNumber

areaCode
number

getPhoneNumber

1

Person

name
officeAreaCode
officeNumber
homeAreaCode
homeNumber

getOfficePhone
getHomePhone

Person

name

getOfficePhone
getHomePhone

phone

Moving features between objects : 
4. Inline Class

32

What? When you have a class that does not do very much, move
 all its features into another class and delete it

Why? To remove useless classes (as a result of other refactorings)

Example:	

PhoneNumber
areaCode
number
getPhoneNumber()

1

Person

name

getPhoneNumber()

office-
phone

1

Person
name
officeAreaCode
officeNumber
getPhoneNumber()

Moving features between objects : 
5. Hide Delegate

33

What? When you have a client calling a delegate class of an object,
 create methods on the server to hide the delegate

Why? Increase encapsulation

Example:	

Person

getDepartment()

Department

getManager()

Person

getManager()

Client Class Client Class

Department

getManager()

Moving features between objects : 
6. Remove Middle Man

34

What? When a class is doing too much simple delegation, get the
 client to call the delegate directly
Why? To remove too much indirection (as a result of other
 refactorings)
Example:

Person

getManager()

Department

Person

getDepartment()

Department

getManager()

Client ClassClient Class

What? When a server class needs an additional method, but you
 cannot modify the class, create a method in the client
 class with an instance of the server class as its first argument

Why? To introduce one additional service

Example:	

Date newStart = new Date (previousEnd.getYear(),
 previousEnd.getMonth(), previousEnd.getDate() + 1);

Date newStart = nextDay(previousEnd);

private static Date nextDay(Date arg) {
 return new Date (arg.getYear(),
 arg.getMonth(), arg.getDate() + 1);
}

Moving features between objects : 
7. Introduce Foreign Method

35

What? When a server class needs several additional methods but you cannot 
 modify the class, create a new class containing the extra methods;
 make the extension class a subclass or wrapper

Why? To introduce several additional services

Example:	

Client Class

nextDayDate(Date): Date

MfDate

nextDay(): Date
Date

Moving features between objects : 
8. Introduce Local Extension

36

Small refactorings

(de)composing methods [9 refactorings]

moving features between objects [8 refactorings]

organising data [16 refactorings]

simplifying conditional expressions [8 refactorings]

dealing with generalisation [12 refactorings]

simplifying method calls [15 refactorings]

37

Small Refactorings :  
organising data

1. Encapsulate field

2. Replace data value with
object

3. Change value to reference

4. Change reference to value

5. Replace array with object

6. Duplicate observed data

7. Change unidirectional
association to bidirectional

8. Change bidirectional
association to unidirectional

9. Replace magic number with
symbolic constant

10. Encapsulate collection

11. Replace record with data class

12. Replace subclass with fields

13-16. Replace type code with
class / subclass / state /
strategy

38

X

Organising Data : 
1. Encapsulate Field

private String name;  
public String getName() {  
 return this.name; }  
public void setName(String s) {  
 this.name = s; }

public String name;

What? There is a public field. Make it private and provide accessors.

Why? Encapsulating state increases modularity, and facilitates code reuse 
 and maintenance.
 When the state of an object is represented as a collection of private 
 variables, the internal representation can be changed without
 modifying the external interface

Example:	

X

private Document doc;  
public String getContents() {  
 return this.doc.getContents(); }  
public void setContents(String s) {  
 this.doc.setContents(s); }

public class Document {  
 private String contents;

 public String getContents() {
 return this.contents; }
 public void setContents(String s) {  
 this.contents = s; }  
}

private String contents;
public String getContents() {
 return this.contents; }
public void setContents(String s) {
 this.contents = s; }

Organising Data : 
2. Replace Data Value with Object

X

What? An immutable type code affects the behaviour of a class
Example:

SOLUTION
CREATE SUBCLASSES FOR EACH VALUE OF THE CODED TYPE. 

EXTRACT RELEVANT BEHAVIORS FROM THE ORIGINAL CLASS TO THESE SUBCLASSES.
REPLACE THE CONTROL FLOW CODE WITH POLYMORPHISM.

Organising Data : 
13. Replace Type Code with Subclass

Employee
const Engineer=0
const Salesman=1
const Manager=2
type:Int

Employee

Engineer Salesman Manager

PROBLEM
YOU HAVE A CODED TYPE FIELD OF WHICH THE VALUES DIRECTLY

AFFECT TRIGGER DIFFERENT BEHAVIOUR IN CONDITIONALS.

X

When? If subclassing cannot be used, e.g. because of dynamic
 type changes during object lifetime (e.g. promotion of employees)  

Example:	

Employee

const Engineer=0
const Salesman=1
const Manager=2
type:Int

Employee EmployeeType

Engineer Salesman Manager

Organising Data :  
15,16. Replace Type Code with State/Strategy

Makes use of state pattern or strategy design pattern

X

Organising Data : 
12. Replace Subclass with Fields

What? Subclasses vary only in methods that return constant data

Solution: Change methods to superclass fields and eliminate subclasses

Example:

	
Person
sex: [M, F]

Person

Male Female

Similar to replace inheritance with aggregation

Small refactorings

(de)composing methods [9 refactorings]

moving features between objects [8 refactorings]

organising data [16 refactorings]

simplifying conditional expressions [8 refactorings]

dealing with generalisation [12 refactorings]

simplifying method calls [15 refactorings]

44

Small Refactorings :  
simplifying conditional expressions

1. Decompose conditional

2. Consolidate conditional expression

3. Consolidate duplicate conditional fragments

4. Remove control flag

5. Replace nested conditional with guard clauses

6. Replace conditional with polymorphism

7. Introduce null objects

8. Introduce assertion
45

Small refactorings

(de)composing methods [9 refactorings]

moving features between objects [8 refactorings]

organising data [16 refactorings]

simplifying conditional expressions [8 refactorings]

dealing with generalisation [12 refactorings]

simplifying method calls [15 refactorings]

46

Small Refactorings :  
dealing with generalisation

1. Push down method / field

2. Pull up method / field / constructor body

3. Extract subclass / superclass / interface

4. Collapse hierarchy

5. Form template method

6. Replace inheritance with delegation (and vice versa)
47

Dealing with Generalisation:  
1. Push Down Method

When behaviour on a superclass is relevant only for some of its subclasses,
move it to those subclasses

Engineer

Employee

getQuota

Salesman

48

Salesman

getQuota

Employee

Engineer

ASCIIPrinter PSPrinter

Printserver

accept

ASCIIPrinter

accept

PSPrinter

accept

Printserver

Dealing with Generalisation:  
2. Pull Up Method

Simple variant: look for methods with same name in subclasses that do not appear in
superclass

More complex variant: do not look at the name but at the behaviour of the method

If the method that is being pulled up already exists in the superclass as an abstract method,
make it concrete with the common behaviour

49

When you have 2 classes with similar features

PrintServer FileServer FileserverPrintserver

Outputserver

Dealing with Generalisation:  
3. Extract Superclass

50

Small refactorings

(de)composing methods [9 refactorings]

moving features between objects [8 refactorings]

organising data [16 refactorings]

simplifying conditional expressions [8 refactorings]

dealing with generalisation [12 refactorings]

simplifying method calls [15 refactorings]

51

Small Refactorings :  
simplifying method calls

1. Rename method

2. Add parameter

3. Remove parameter

4. Separate query from modifier

5. Parameterise method

6. Replace parameter with method

7. Replace parameter with explicit
methods

8. Preserve whole object

9. Introduce parameter object

10.Remove setting method

11. Hide method

12.Replace constructor with factory
method

13.Encapsulate downcast

14.Replace error code with exception

15.Replace exception with test

52

Simplifying method calls :  
9. Introduce Parameter Object

Customer
amountInvoicedIn(from:Date,to:Date)
amountReceivedIn(from:Date,to:Date)
amountOverdueIn(from:Date,to:Date)

Customer
amountInvoicedIn(r:DateRange)
amountReceivedIn(r:DateRange)
amountOverdueIn(r:DateRange)

DataRange
from : Date
to : Date

53

SOLUTION
REPLACE THESE PARAMETERS WITH AN OBJECT AND USE THAT OBJECT AS PARAMETER INSTEAD.

PROBLEM
YOUR METHODS CONTAIN A REPEATING GROUP OF PARAMETERS.

Simplifying method calls:  
14. Replace Error Code with Exception

What? When a method returns a special code to indicate an
	 error, throw an exception instead
Why? Clearly separate normal processing from error processing
Example:

	

int withdraw(int amount) {
 if (amount > balance)
 return -1
else
 {balance -= amount;
 return 0}
}

void withdraw(int amount) throws BalanceException {
 if (amount > balance) throw new BalanceException();
 balance -= amount;
}

54

Categories of refactorings
(according to [Fowler2000])

Small refactorings

(de)composing methods [9]

moving features between objects [8]

organising data [16]

simplifying conditional expressions [8]

dealing with generalisation [12]

simplifying method calls [15]

Big refactorings

Tease apart inheritance

Extract hierarchy

Convert procedural design to objects

Separate domain from presentation

55

Big refactorings

Require a large amount of time (> 1 month)

Require a degree of agreement among the
development team

No instant satisfaction, no visible progress

56

Big Refactorings

1. Tease apart inheritance

2. Extract hierarchy

3. Convert procedural design to objects

4. Separate domain from presentation

Big refactorings:  
1. Tease apart inheritance

Problem

A tangled inheritance hierarchy that is doing 2 jobs at
once

Solution

Create 2 separate hierarchies and use delegation to invoke
one from the other

58

Big refactorings:  
1. Tease apart inheritance

Approach

Identify the different jobs done by the hierarchy.

Extract least important job into a separate hierarchy.

Use extract class to create common parent of new hierarchy.

Create appropriate subclasses.

Use move method to move part of the behaviour from the
old hierarchy to the new one.

59

Big refactorings:  
1. Tease apart inheritance

60

Window

FullXWin FullMSWin IconXWin

Full Iconised

IconMSWin

WindowImpl

FullXWin

Window

IconisedMSWin

1

Big refactorings:  
1. Tease apart inheritance

Related design patterns

Bridge

decouples an abstraction from its
implementation so that the two can vary
independently

Strategy / Visitor / Iterator / State

61

Big refactorings:  
2. Extract hierarchy

Problem

An overly-complex class that is doing too much work,
at least in part through many conditional statements.

Solution

Turn class into a hierarchy where each subclass
represents a special case.

62

Big refactorings:  
2. Extract hierarchy

Approach

Create a subclass for each special case.

Use one of the following refactorings to return the appropriate subclass
for each variation:

replace constructor with factory method

replace type code with subclasses

replace type code with state/strategy

Take methods with conditional logic and apply:

replace conditional with polymorphism
63

Calculating electricity bills.

Lots of conditional logic needed to cover many different cases:

different charges for summer/winter

different tax rates

different billing plans for personal / business / government / …

reduced rates for persons with  
disabilities or social security

Customer

Billing Scheme

Big refactorings:  
2. Extract hierarchy (example)

64

Big refactorings:  
3. Convert procedural design  

into objects
Problem

You have code written in a procedural style.

Solution

Turn the data records into objects, break up the behaviour, and
move the behaviour to the objects.

Smaller refactorings used

extract method, move method, …

65

Big refactorings:  
4. Separate domain  
from presentation

Goal

Change a two-tier design (user interface/database) into a a
three-tier one (UI/business logic/database).

Solution

Separate domain logic into separate domain classes.

Smaller refactorings used

extract method, move method/field, duplicate observed data, …

66

 
C. REFACTORING TOOLS

LINGI2252 – PROF. KIM MENS
*

CODE REFACTORING – REFACTORING TOOLS

AUTOMATED CODE REFACTORING TOOLS

Available for all major programming languages  
(and OO programming languages in particular)

Java : IntelliJ IDEA, Eclipse, NetBeans, JDeveloper, …

JavaScript : WebStorm, Eclipse, …

C++ : VisualStudio, Eclipse, …

ObjectiveC and SWIFT : XCode

.NET : VisualStudio

Smalltalk, PHP, Ruby, Python, C#, Delphi, …

68

CODE REFACTORING – REFACTORING TOOLS

LIMITATIONS OF MOST REFACTORING TOOLS

Only support for primitive refactorings

class refactorings

add (sub)class to hierarchy, rename class, remove class

method refactorings

add to class, rename, remove, push down, pull up, add parameter, move to
component, extract code

variable refactorings

add to class, rename, remove, push down, pull up, create accessors, abstract
variable

Often no support for higher-level refactorings

69

CODE REFACTORING – REFACTORING TOOLS

REFACTORING IN ECLIPSE

The refactoring tool in Eclipse supports a number of
transformations described in Martin Fowler's book

Refactoring can be accessed via the Refactor menu.

Refactoring commands are also available from the context
menus in many views or appear as quick assists.

http://help.eclipse.org/neon/topic/org.eclipse.jdt.doc.user/reference/ref-menu-refactor.htm
http://help.eclipse.org/neon/topic/org.eclipse.jdt.doc.user/reference/ref-java-editor-quickassist.htm

CODE REFACTORING – REFACTORING TOOLS

SUPPORTED REFACTORING ACTIONS IN ECLIPSE (2016)

Rename, Move, Change Method Signature

Extract Method, Extract Local Variable, Extract Constant

Inline, Move Type to New File, Use Supertype Where Possible

Convert Anonymous Class to Nested, Convert Local Variable to Field

Extract Superclass, Extract Interface, Extract Class

Push Down, Pull Up, Encapsulate Field

Introduce Parameter Object, Introduce Indirection

Introduce Factory, Introduce Parameter

Generalize Declared Type , Infer Generic Type Arguments

(and more)

CODE REFACTORING – REFACTORING TOOLS 72

CODE REFACTORING – REFACTORING TOOLS 73

CODE REFACTORING – REFACTORING TOOLS 74

 
D. WORDS OF WARNING

LINGI2252 – PROF. KIM MENS
*

CODE REFACTORING – WORDS OF WARNING

A WORD OF WARNING (1)

Know what you are doing

If not applied well, refactoring may decrease quality rather
than improve it

76

CODE REFACTORING – WORDS OF WARNING

A WORD OF WARNING (1)

“Bad smells” are symptoms that something is wrong

Refactoring are supposed to remove “bad smells”

PhoneNumber

areaCode
number

getPhoneNumber

1

Person

name
officeAreaCode
officeNumber
homeAreaCode
homeNumber

getOfficePhone
getHomPhone

Person

name

getOfficePhone
getHomePhone

phone
1

EXTRACT 
CLASS

SMELLS LIKE A
TOO “LARGE CLASS” SMELLS BETTER

NOW…

77

CODE REFACTORING – WORDS OF WARNING

A WORD OF WARNING (1)

Refactoring should not introduce new smells

HumanBeing

gender

Person

name

getOfficePhone
getHomePhone

EXTRACT 
SUPERCLASS

Person

name
gender

getOfficePhone
getHomePhone

SMELLS LIKE A
TOO ABSTRACT CLASS

78

CODE REFACTORING – WORDS OF WARNING

NEXT SESSION: INTRODUCTION TO “BAD SMELLS”

Bad code smells

indicate that your code is ripe for refactoring

Refactoring is about

how to change code

Bad smells are about

when to modify it

79

CODE REFACTORING – WORDS OF WARNING

A WORD OF WARNING (2)

Independently applied refactorings can introduce subtle
merge conflicts

80

Bank

Account

Loan

handles
Company

Agency

Account

Loan
handles

Bank Company

represents

Bank

Account

Loan
handles

Company

Safe

EXTRACT 
CLASS

CREATE
SUBCLASS

REFACTORING CONFLICT :

In the new version, Safe should not
be handled by Bank, but by Agency

CODE REFACTORING

POSSIBLE QUESTIONS

25.Give a definition of refactoring in your own words 
and illustrate it with a concrete example of a refactoring.

26.Explain why it is important to refactor.

27.Explain when (= at what moment) refactoring should (or should not) be performed.

28.Like refactoring, performance optimisation does not usually change the behaviour of code (other
than its speed); it only alters the internal structure. So how does it differ from refactoring?

29.Explain and illustrate one of the following refactorings in detail:

‣ Extract Method, Move Method, Extract Class, Replace Type Code with Subclass, Replace
Subclass with Fields, Pull Up Method, Introduce Parameter Object

30.Give a concrete example of how a refactoring could accidentally reduce quality.

31.Give a concrete example of how to independently applied refactorings could accidentally
introduce a subtle merge conflict.

CLASS… IS… DISMISSED.

https://vimeo.com/35864017

