
SOFTWARE MAINTENANCE 
& EVOLUTION

LINGI2252 – PROF. KIM MENS

SOFTWARE REUSE 
& OBJECT-ORIENTED PROGRAMMING

LINGI2252 – PROF. KIM MENS

A. SOFTWARE REUSE

LINGI2252 – PROF. KIM MENS

SOFTWARE REUSE

REUSABILITY [DEFINITION]

Reusability is a general engineering principle whose importance
derives from the desire to avoid duplication and to capture
commonality in undertaking classes of inherently similar tasks.

Source: Peter Wegner, "Capital-Intensive Software Technology", in
Chapter 3 of Software Reusability, Volume I : Concepts and Models,
ACM Press, 1989.

Software reusability is the degree to which a software module or other
work product can be used in more than one software system.

Reusable: pertaining to a software module or other work product that
can be used in more than one computer program or software system.

�4

SOFTWARE REUSE

SOFTWARE REUSE [DEFINITION]

Software reuse

The reapplication of a variety of kinds of knowledge about one
system to another in order to reduce the effort of developing or
maintaining that other system.

This “reused knowledge” includes artefacts such as domain
knowledge, development experience, requirements, architectural
components, design artefacts, code, documentation, and so forth.

Source: Software Reusability, Volume I : Concepts and Models, Eds.
Biggerstaff & Perlis, ACM Press, 1989.

�5

SOFTWARE REUSE

REUSABLE COMPONENT [DEFINITION]

Software reuse

The process of implementing new software systems using existing
software information.

Reusable component

A software component designed and implemented for the specific
purpose of being reused.

Component can be requirement, architecture, design, code, test data, etc.

Source: Kang & al., Feature-Oriented Domain Analysis (FODA): Feasibility
Study, Technical Report CMU/SEI-90-TR-21, 1990.

�6

SOFTWARE REUSE

SOFTWARE REUSE [EXAMPLE]

Using functions available in some library.

E.g., C libraries are collections of precompiled functions
that have been written to be reused by other programmers.

Reusing classes from another object-oriented program.

Adapting the modules of a software system with a very similar
functionality (member of a same “family”).

Reusing the architecture or design of a software system when
porting it to a new language.

�7

SOFTWARE REUSE

WHY REUSE?

Economic justification:

more productive by avoiding double work

better quality by reusing good solutions

Intellectual justification:

stand on each other's shoulders

don't reinvent or reimplement old stuff

focus on what's new and relevant

�8

SOFTWARE REUSE

SOME REUSE TECHNIQUES

Programming abstractions and mechanisms

procedural and data abstraction  
encapsulation and information hiding 
code sharing and reuse mechanisms

Design patterns

Software architecture

Software libraries & application frameworks

Generative programming & model-driven development

�9

B. OBJECT-ORIENTED PROGRAMMING

LINGI2252 – PROF. KIM MENS

OBJECT-ORIENTED PROGRAMMING

OBJECT-ORIENTED PROGRAMMING PROMOTES MODULARITY AND REUSE

It is often “claimed” that object-oriented programming

is a better way of writing more modular programs

leverages code sharing and design reuse

minimises maintenance costs

Thanks to its abstraction mechanisms

�11

OBJECT-ORIENTED PROGRAMMING

ABSTRACTION MECHANISMS

Encapsulation

keep data and operations that act on this data together

Information hiding

isolate and hide design and implementation choices

Polymorphism

allow for different implementations of a same design to co-exist

Code sharing

capture and exploit similarities in data and behaviour 
(through inheritance)

�12

OBJECT-ORIENTED PROGRAMMING

KEY OBJECT-ORIENTED CONCEPTS

Objects & Classes

Methods & Messages

Polymorphism & Dynamic Binding

Hierarchies of classes

Method overriding, self & super calls

Abstract classes & methods

Different kinds of inheritance

Single, Multiple, Interfaces, Mixins

�13

DISCLAIMER

ALTHOUGH WHAT FOLLOWS MAY  
SEEM LIKE A CRASH COURSE IN OO  

OUR FOCUS WILL LIE ON THE
MECHANISMS IT PROVIDES FOR

ACHIEVING MODULARITY,
MAINTAINABILITY, SHARING AND REUSE

OBJECT-ORIENTED PROGRAMMING

TWO MAIN PRINCIPLES OF OBJECT-ORIENTED PROGRAMMING

Everything is an object

Objects respond only to messages

�14

OBJECT-ORIENTED PROGRAMMING

SMALLTALK’S INFLUENCE

Smalltalk is a pure object-oriented language

Was a source of inspiration to many OO languages

Ruby is heavily inspired on Smalltalk

Objective-C and Swift heavily inspired on Smalltalk

Java is heavily influenced by Smalltalk

�15

DISCLAIMER

THIS SESSION MAY CONTAIN TRACES OF SMALLTALK CODE  
(FOR DIDACTIC PURPOSES)

OBJECT-ORIENTED PROGRAMMING

KEY OBJECT-ORIENTED CONCEPTS

Objects & Classes

Methods & Messages

Polymorphism & Dynamic Binding

Hierarchies of classes

Method overriding, self & super calls

Abstract classes & methods

Different kinds of inheritance

Single, Multiple, Interfaces, Mixins

�16

OBJECT-ORIENTED PROGRAMMING

OBJECTS ENCAPSULATE DATA

Every object has its own data or state

Values stored in the objects

(but variables declared in classes)

Data is encapsulated

Protected from the outside world

Only accessible through messages

aPoint
x 5
y 10

�17

circumference

aCircle
center •
radius 2

OBJECT-ORIENTED PROGRAMMING

CLASSES ENCAPSULATE BEHAVIOUR

Classes

declare the state of objects 
(but objects contain the actual values)

define the behaviour of objects

method implementations

shared among all objects of a class

can manipulate the state directly

Behaviour is encapsulated

invoked by sending message to an object

Circle

center (Point)

radius (Number)

surface π.radius2

circumference 2.π.radius

Example:

�18

OBJECT-ORIENTED PROGRAMMING

CLASSES ARE FACTORIES OF OBJECTS

A class is a “factory” for producing objects of the same type

e.g., with a Circle class you can create many circle objects

Every object is an instance of the class from which it was created

A class is a blueprint for objects that share behaviour and state

All objects of a class behave in a similar fashion in response
to a same message

Enables reuse of behaviour

�19

OBJECT-ORIENTED PROGRAMMING

CLASSES & OBJECTS PROMOTE MODULARITY

Through encapsulation

of both behaviour and state

grouping behaviour with the data it acts upon

facilitates modularity, code reuse and maintenance

�20

OBJECT-ORIENTED PROGRAMMING

CLASSES & OBJECTS PROMOTE REUSE

Classes are fine-grained reusable components

that enable sharing and reuse of structure and behaviour

even across applications

for example via application frameworks

or reusable class hierarchies

�21

OBJECT-ORIENTED PROGRAMMING

KEY OBJECT-ORIENTED CONCEPTS

▸ Objects & Classes

▸ Methods & Messages

▸ Polymorphism & Dynamic Binding

▸ Hierarchies of classes

▸ Method overriding, self & super calls

▸ Abstract classes & methods

▸ Different kinds of inheritance

▸ Single, Multiple, Interfaces, Mixins

�22

OBJECT-ORIENTED PROGRAMMING

METHODS & MESSAGES (RECAP)

Objects (not functions or procedures) are the main building blocks
of OO

Objects communicate through message passing

Objects exhibit behaviour in response to messages sent to
them

The actual behaviour is implemented in methods

Methods specify what behaviour to perform on objects

Methods can manipulate the objects’ internal state

�23

OBJECT-ORIENTED PROGRAMMING

POLYMORPHIC METHODS

A same message can be sent to objects of different classes

aCircle.surface aRectangle.surface

Different objects can react differently to the same message

different classes can provide different implementations 
for methods with the same name

Circle > surface = π.radius2  

Rectangle > surface = (bottom-top).(right-left)

Responsibility of how to handle the message is decided by the object 
(depending on the class to which it belongs)

This is called “polymorphism”

�24

OBJECT-ORIENTED PROGRAMMING

ADVANTAGES OF POLYMORPHISM

Cleaner, more maintainable code

Less ≠ method names

Less need for conditionals

More implementation freedom

Each class can decide how best to implement a method

Locality

Every object/class is responsible for its own actions

Easy to change the implementation by another one

�25

OBJECT-ORIENTED PROGRAMMING

EXAMPLE OF POLYMORPHISM

Procedural style vs. object-oriented style

Example:

Write some code that calculates the sum of the surfaces of
a collection of different shape objects

surface(collection) = Σshape∈collection surface(shape)

�26

OBJECT-ORIENTED PROGRAMMING

EXAMPLE OF POLYMORPHISM (PSEUDOCODE)

Procedural style (no polymorphism)

circleSurface(c) = π.radius(c)2  

rectangleSurface(r) = (bottom(r) - top(r)) * (right(r) - left(r))  

surface(collection) : Real
total = 0
∀ shape ∈ collection :

if (shape == Circle) then
total = total + circleSurface(shape)

else if (shape == Rectangle) then
total = total + rectangleSurface(shape)

return total

�27

OBJECT-ORIENTED PROGRAMMING

EXAMPLE OF POLYMORPHISM (PSEUDOCODE)

OO style (using polymorphism)

Circle {
 Point center ; Real radius ;
 Real surface() : { π.radius2 }
}
Rectangle {
 Real bottom, top, right, left;
 Real surface() : { (bottom-top)*(right-left) }
}
Real surface(collection) : {

total = 0
∀ shape ∈ collection : total = total + shape.surface()
return total  

}

�28

OBJECT-ORIENTED PROGRAMMING

EXAMPLE OF POLYMORPHISM (PSEUDOCODE)

OO style (using polymorphism)

 
 Real surface(collection) : {

total = 0
∀ shape ∈ collection : total = total + shape.surface()
return total  

 }  

Advantages:

Adding a new shape does not require to change the existing
implementation

No need to know the kind of objects it manipulates as long as they
all share a common interface

�29

OBJECT-ORIENTED PROGRAMMING

LATE BINDING

When sending a message, the actual receiver of a message is not
necessarily known until run-time

Mapping of messages to methods is deferred until run-time

depending on which object actually received the message

we call this late binding or dynamic binding

Most traditional languages do this at compile time (static binding)

Smalltalk uses late binding

�30

surface
aCircle

aRectangle
aTriangle

OBJECT-ORIENTED PROGRAMMING

EXAMPLE OF LATE BINDING (PSEUDOCODE)
abstract Shape {
 abstract Real surface() : { }
}
Circle inherits Shape {
 Point center ; Real radius ;
 Real surface() : { π.radius2 }
}
Rectangle inherits Shape {
 Real bottom, top, right, left;
 Real surface() : { (bottom-top)*(right-left) }
}
test() : {
 Shape shape;
 shape = new Circle(new Point(0,0), 2);
 print(shape.surface());
 shape = new Rectangle(10,10,30,50);
 print(shape.surface())
}

polymorphic methods

late bound messages

OBJECT-ORIENTED PROGRAMMING

STATIC VS. DYNAMIC BINDING IN JAVA

Smalltalk uses dynamic binding (a.k.a. late binding)

For Java it depends

Binding of overridden methods happens at runtime (dynamic)

Binding for overloaded methods at compile time (static)

Binding of private, static and final methods at compile time (static)

 since these methods cannot be overridden.

Sources:

http://beginnersbook.com/2013/04/java-static-dynamic-binding/

http://stackoverflow.com/questions/19017258/static-vs-dynamic-binding-in-java

�32

http://beginnersbook.com/2013/04/java-static-dynamic-binding/
http://stackoverflow.com/questions/19017258/static-vs-dynamic-binding-in-java

OBJECT-ORIENTED PROGRAMMING

LATE BINDING EXAMPLE (JAVA)

Source: http://stackoverflow.com/questions/19017258/static-vs-dynamic-binding-in-java

Apart from syntactic differences and
the lack of type declarations in
Smalltalk, this example could be
recreated nearly “as is” in Smalltalk.

In fact for Smalltalk you could even
create an example that doesn’t
require inheritance.

http://stackoverflow.com/questions/19017258/static-vs-dynamic-binding-in-java

OBJECT-ORIENTED PROGRAMMING

LATE BINDING EXAMPLE IN JAVA

The method call vehicle.start()  
is dynamically bound to the
overridden Car > start() method

Because even though vehicle is
typed as being of class Vehicle,
it is determined at runtime that
it contains an object of type Car

and because the method start()
is overridden

OBJECT-ORIENTED PROGRAMMING

STATIC BINDING EXAMPLE IN JAVA

�35

Source: http://stackoverflow.com/questions/19017258/static-vs-dynamic-binding-in-java

http://stackoverflow.com/questions/19017258/static-vs-dynamic-binding-in-java

OBJECT-ORIENTED PROGRAMMING

STATIC BINDING EXAMPLE IN JAVA

The method call et.sort(c)  
is statically determined by 
the compiler to refer to 
the sort(Collection) method

Even though c is an object of type
HashSet and the sort(HashSet) method
is more specific

Because c is statically 
determined to have type Collection

and the method sort is overloaded, not
overridden

�36This example cannot be recreated in
Smalltalk since Smalltalk has no
method overloading.

(Nor does it have final methods or
private methods.)

OBJECT-ORIENTED PROGRAMMING

CLASSES & OBJECTS PROMOTE MODULARITY

Through information hiding

restricted access to objects through a well-defined interface

users of an object only know the set of messages it will accept

they do not know how the actions performed in response to a message
are carried out

This is the responsibility of the receiving object (through polymorphism)

improves modularity by hiding implementation details

How the data is represented internally

How the behaviour is implemented in terms of that data

�37

OBJECT-ORIENTED PROGRAMMING

KEY OBJECT-ORIENTED CONCEPTS

▸ Objects & Classes

▸ Methods & Messages

▸ Polymorphism & Dynamic Binding

▸ Hierarchies of classes

▸ Method overriding, self & super calls

▸ Abstract classes & methods

▸ Different kinds of inheritance

▸ Single, Multiple, Interfaces, Mixins

�38

OBJECT-ORIENTED PROGRAMMING

HIERARCHIES OF CLASSES

Shape
colour (Colour)

Rectangle
bottom top

left right

surface height*width

circumference 2.height+2.width

Circle
center radius

surface π.radius2

circumference 2.π.radius

�39

OBJECT-ORIENTED PROGRAMMING

HIERARCHIES OF CLASSES

Classes are typically organised into hierarchical structures

Information (data/behaviour) associated with classes higher in the
hierarchy is automatically accessible to classes lower in the hierarchy

Each subclass specialises the definition of its ancestors

subclasses can use ancestor’s behaviour and state

subclasses can add new state and behaviour

subclasses can specialise ancestor behaviour

subclasses can override ancestor’s behaviour

�40

OBJECT-ORIENTED PROGRAMMING

HIERARCHIES OF CLASSES

Inheritance is a powerful incremental reuse mechanism

Often you don’t want to rewrite everything; you just want some
small changes to what exists

Classes are the units of reuse

Inheritance is the reuse mechanism

e.g., extends keyword in Java : 
class Automobile extends LandVehicle

Class hierarchies are ideal for sharing declarations and
implementation among classes

Object’s state and behavioural description is broken into
pieces and distributed along specialisation paths

Promotes encapsulation, modularity, and reusability

Container
colour contents

Vehicle
velocity location

LandVehicle
wheels

Automobile
brand

�41

OBJECT-ORIENTED PROGRAMMING

KEY OBJECT-ORIENTED CONCEPTS

▸ Objects & Classes

▸ Methods & Messages

▸ Polymorphism & Dynamic Binding

▸ Hierarchies of classes

▸ Method overriding, self & super calls

▸ Abstract classes & methods

▸ Different kinds of inheritance

▸ Single, Multiple, Interfaces, Mixins

�42

OBJECT-ORIENTED PROGRAMMING

SELF AND SUPER CALLS

Methods use:

self calls to reference the receiver object

this keyword in Java, self in Smalltalk

super to reference their implementor’s parent

Attention ! Key issue in object-oriented programming:

self = late/dynamically bound

method lookup starts again in the class of the receiver object

super = statically bound

method lookup starts in the superclass of the class of the method 
containing the super expression;

not in the superclass of the receiver class

�43

OBJECT-ORIENTED PROGRAMMING

SELF REFERS TO THE RECEIVER CLASS
SomeSuperclass {
 void printMyself : {

self.print
}

 void print : {
 display("Printed in superclass. ")
 }
}
SomeSubclass inherits from SomeSuperclass {
 void print : {
 super.print
 display("Printed in subclass.”)
 }
}
SubSubclass inherits from SomeSubclass {
}
test : {
 s = new SubSubclass()
 s.printMyself
 }
}

self refers to the receiver object

receiver class is SubSubclass

self will dynamically look up
methods starting from this class

�44

OBJECT-ORIENTED PROGRAMMING

METHOD OVERRIDING

Subclasses can re-implement methods that are already implemented in
superclasses

enables fine-grained reuse

clients do not have to know this (encapsulation and polymorphism)

An overridden method

can either overwrite a method with a completely new implementation

or can specialise the behaviour of the method defined in its superclass

special keyword for accessing the superclass : super

�45

OBJECT-ORIENTED PROGRAMMING

EXAMPLE OF METHOD SPECIALISATION
SomeSuperclass {
 void print : {
 display("Printed in superclass. ")
 }
}
SomeSubclass inherits from SomeSuperclass {
 void print : {
 super.print
 display("Printed in subclass.”)
 }
}
test : {
 s = new SomeSubclass()
 s.print
 }
}

After calling test, the program prints:
Printed in superclass. Printed in subclass.

overridden method

overriding method
specialises overridden method 
using super keyword

�46

OBJECT-ORIENTED PROGRAMMING

SUPER IS NOT THE SUPERCLASS OF THE RECEIVER CLASS
SomeSuperclass {
 void print : {
 display("Printed in superclass. ")
 }
}
SomeSubclass inherits from SomeSuperclass {
 void print : {
 super.print
 display("Printed in subclass.”)
 }
}
SubSubclass inherits from SomeSubclass {
}
test : {
 s = new SubSubclass()
 s.print
 }
}

After calling test, the program prints:
Printed in superclass. Printed in subclass.

super statically refers to
this class

�47

receiver class is SubSubclass

if super would refer to
the super class of the receiver
class, we would get a loop

OBJECT-ORIENTED PROGRAMMING

HOMEWORK

�48

x = 1

s = “Aha”

A

n() { print(s) }

m() { this.n(); print(x) }

y = 2

B

m() { print(s+y) }

s() { super.m() }

x = 3

s = “Choco”

C

n() { super.n(); print(“tof”) }

 A a = new A();

 B b = new B();

 C c = new C();

 a.n();

 a.m();

 a.s();

 b.n();

 b.m();

 b.s();

 c.m();

 c.n();

 c.s();

PREDICT THE RESULT OF THESE
METHOD INVOCATIONS

OBJECT-ORIENTED PROGRAMMING

KEY OBJECT-ORIENTED CONCEPTS

▸ Objects & Classes

▸ Methods & Messages

▸ Polymorphism & Dynamic Binding

▸ Hierarchies of classes

▸ Method overriding, self & super calls

▸ Abstract classes & methods

▸ Different kinds of inheritance

▸ Single, Multiple, Interfaces, Mixins

�49

OBJECT-ORIENTED PROGRAMMING

CONCRETE VS. ABSTRACT CLASSES

Abstract Class

Holds on to common characteristics shared
by other classes

Not expected to have instances

Concrete Class

Contains complete characterisation 
of actual objects of that class

Expected to have instances

Container
colour contents

Vehicle
velocity location

LandVehicle
wheels

AirVehicle
wings

�50

OBJECT-ORIENTED PROGRAMMING

ABSTRACT CLASSES AND ABSTRACT METHODS

cannot be instantiated (in Java)

but can provide some method implementations

methods of which the implementation is shared by all subclasses

methods with a default implementation to be specialised by subclasses

methods with a partial implementation to be completed by a subclass
(e.g., template method pattern)

typically have at least one abstract method

a method with an empty implementation that must be provided by each
subclass

�51

OBJECT-ORIENTED PROGRAMMING

KEY OBJECT-ORIENTED CONCEPTS

▸ Objects & Classes

▸ Methods & Messages

▸ Polymorphism & Dynamic Binding

▸ Hierarchies of classes

▸ Method overriding, self & super calls

▸ Abstract classes & methods

▸ Different kinds of inheritance

▸ Single, Multiple, Interfaces, Mixins

�52

OBJECT-ORIENTED PROGRAMMING

KINDS OF INHERITANCE

Different kinds of inheritance

Single: 1 superclass

Multiple: 1 or more superclasses

Interface

Mixin modules

�53

OBJECT-ORIENTED PROGRAMMING

SINGLE INHERITANCE

Organises classes in tree structures

Every class has a unique superclass

There is a root class, typically called Object

�54

OBJECT-ORIENTED PROGRAMMING

SINGLE INHERITANCE PROBLEMS

Classes can play several roles

Factories from which instances can be created

Units of reuse

Inheritance can play several roles

code reuse

design reuse

These roles can conflict

Multiple inheritance to the rescue… ?

�55

OBJECT-ORIENTED PROGRAMMING

MULTIPLE INHERITANCE

Sometimes it is convenient to have a
class which has multiple parents

Some languages, like C++, 
support multiple inheritance

Subclasses inherit instance variables
and methods from all parents

�56

https://en.wikipedia.org/wiki/Multiple_inheritance

Vehicle
velocity location

FlyingCar

LandVehicle
wheels

AirVehicle
wings

OBJECT-ORIENTED PROGRAMMING

THE DIAMOND PROBLEM

A problem arises when the same methods or
variables are inherited via different paths

e.g. what version of location method to use
when called on FlyingCar?

duplicated behaviour

can be solved through manual overriding

or through linearisation

duplicated state

harder to solve

Vehicle
velocity location

LandVehicle
wheels location

AirVehicle
wings location

FlyingCar

�57

OBJECT-ORIENTED PROGRAMMING

INTERFACES

Java has single inheritance

Java interfaces were introduced to provide some of the
functionality of true multiple inheritance

You can inherit from one class and from multiple interfaces 
simultaneously

Interfaces are like abstract classes with no fields or method
implementations

No diamond problem since interfaces contain no data or behaviour

�58

http://stackoverflow.com/questions/3556652/how-do-java-interfaces-simulate-multiple-inheritance

http://stackoverflow.com/questions/3556652/how-do-java-interfaces-simulate-multiple-inheritance

If Java has no multiple inheritance 
then how should I do something like this?

class FoodTruck extends Truck, Kitchen {
}

foodTruck.drive();
foodTruck.cook(pizza);

OBJECT-ORIENTED PROGRAMMING

EXAMPLE OF USING INTERFACES

�59

FoodTruck

Truck
drive

Kitchen
cook

http://stackoverflow.com/questions/3556652/how-do-java-interfaces-simulate-multiple-inheritance

http://stackoverflow.com/questions/3556652/how-do-java-interfaces-simulate-multiple-inheritance

class FoodTruck extends Truck implements KitchenInterface {
 Kitchen kitchen;
 public void cook(Food foodItem) {
 kitchen.cook(foodItem);
 }
}

foodTruck.drive();
foodTruck.cook(pizza);

OBJECT-ORIENTED PROGRAMMING

EXAMPLE OF USING INTERFACES

�60

FoodTruck
cook

Truck
drive

KitchenInterface
cook

http://stackoverflow.com/questions/3556652/how-do-java-interfaces-simulate-multiple-inheritance

interface  
inheritance

class 
inheritance

interfaceclass

Kitchen
cook

http://stackoverflow.com/questions/3556652/how-do-java-interfaces-simulate-multiple-inheritance

OBJECT-ORIENTED PROGRAMMING

MIXINS

Factoring out the increment when subclassing

Mixins can be seen as the “increment” that needs to be applied to a class

Mixin composition is an operation that applies a mixin to a class to produce a
more specialised class

Typically, mixin composition is linearised

this can cause problems:

composition order important

introducing extra mixin can change behaviour

Example: mixin modules in Ruby

�61

OBJECT-ORIENTED PROGRAMMING

CONCLUSION

OO promotes maintainability by viewing programs as collections of loosely connected
objects

Each object is responsible for specific tasks

It is through the interaction of objects that computation proceeds

Objects can be defined and manipulated in terms of the messages they understand
and ignoring the implementation details

OO promotes the development of reusable components

By reducing the interdependency among individual software components

Such components can be created and tested as independent units in isolation from the
rest of the software system

Reusable software components permit to treat problems at a higher level of abstraction

�62

OBJECT-ORIENTED PROGRAMMING

ABSTRACTION MECHANISMS (REVISITED)

Encapsulation

objects contain their own data as well as the methods that work on that data

Information hiding

clients of an object know only the set of messages it can receive

implementation details of how it processes these messages remain hidden to external clients

Polymorphism

cleaner and more maintainable code by delegating responsibilities and implementation choices
to the objects

Code sharing

classes enable sharing behaviour among objects

class hierarchies and inheritance enable reuse of class definitions

�63

SOFTWARE REUSE

LEARNING OBJECTIVES

▸ definitions of reusability, software reuse and reusable component

▸ how object-oriented programming promotes modularity, maintainability and
reuse

▸ encapsulation, information hiding, polymorphism and code sharing

▸ key object-oriented concepts: object, classes, methods, messages, inheritance

▸ polymorphism and dynamic binding

▸ method overriding, self and super calls

▸ abstract classes and methods

▸ different kinds of inheritance: single, multiple, interfaces, mixins

SOFTWARE REUSE

POSSIBLE QUESTIONS

16. Define and illustrate the notions of software reuse, reusability and reusable
components.

17. Give two economic and two intellectual justifications for software reuse.
Explain in detail.

18. Give (and explain) at least 3 different software reuse techniques seen
throughout the course.

19. How and why does object-oriented programming promote modularity and
maintainability?

20. Explain the object-oriented techniques of encapsulation, information hiding,
polymorphism and code sharing and how they relate to software reusability.

SOFTWARE REUSE

POSSIBLE QUESTIONS

21. Explain, using a concrete example, what polymorphism and dynamic
binding is, and how it can lead to more maintainable code.

22. Explain on a concrete example the concepts of method overriding, self and
super calls.

23. How can abstract classes and methods improve reusability? Explain and
illustrate with a concrete example.

24. Explain, using a concrete example, how a multiple inheritance problem
could be modelled in terms of single inheritance on classes and interfaces
in Java.

