
SOFTWARE MAINTENANCE 
& EVOLUTION

LINGI2252 – PROF. KIM MENS

DOMAIN MODELLING

LINGI2252 – PROF. KIM MENS

DOMAIN MODELLING

MAIN CAUSES OF MAINTENANCE PROBLEMS

Poor quality of the software documentation

Poor software quality (e.g., unstructured code, too large
components, inadequate design)

Insufficient knowledge about the system and its domain

(maybe unavailable due to personnel turnover)

Ineffectiveness of maintenance team

low productivity, low motivation, low skill levels, competing
demands for programmer time

�3

REMEMBER?

DOMAIN
ANALYSIS TO
THE RESCUE

A. DOMAIN ANALYSIS

LINGI2252 – PROF. KIM MENS

* Material mostly based on Kang & al., Feature-Oriented Domain Analysis
(FODA): Feasibility Study, Technical Report CMU/SEI-90-TR-21, 1990

*

DOMAIN MODELLING – DOMAIN ANALYSIS

ASSEMBLY LINES

Factory assembly lines

are able to build a series 
of similar products in 
large quantities

Economies of scale: savings from using technology to
produce a greater volume of a single output with the same
or less inputs

�5

* Slide based on slides by A. van Deursen, Domain Engineering, 2001

*

DOMAIN MODELLING – DOMAIN ANALYSIS

SOFTWARE PRODUCT LINES

Inspired by factory assembly lines

Software product lines (SPL)

are about building a family of software systems

sharing a set of common (and differing) features

that satisfy the needs of a particular domain

Economies of scope: savings from using technology to build
a greater diversity of outputs with the same or less inputs

�6

* Slide based on slides by A. van Deursen, Domain Engineering, 2001

*

DOMAIN MODELLING – DOMAIN ANALYSIS

EXAMPLES OF DOMAINS

Window management systems (MSWindows, X windows, …)

Text or graphical editors

Television broadcast planning systems

Air traffic control systems

Telephone switches

Insurance portals

On-line banking applications

* Example used in [Kang & al. 1990]

*

�7

DOMAIN MODELLING – DOMAIN ANALYSIS

SOFTWARE PRODUCT LINES

Today many systems are engineered using a Software Product
Line approach

Product Line architectures exploit the commonalities and
variabilities of systems to maximise reuse across all products and
market segments

The product portfolio of a company is (sometimes) described in
terms of “features” rather than a set of requirements

Industrial Software Product Lines face the challenge to manage
hundreds of features and the diversity of the product portfolio

�8

*

* Slide based on slides by R. Capilla, Variability in the Context, 2018

DOMAIN MODELLING – DOMAIN ANALYSIS

OBJECT-ORIENTED APPLICATION FRAMEWORKS

One particular implementation technique for building software families

Object-oriented application frameworks

Support reuse beyond the class level

by defining a set of cooperating classes embodying an abstract design

that can be used to solve a family of related problems

Building a custom application from a framework is typically done through
class specialisation

Principle of inversion of control: framework calls the application code

MORE ON THIS LATER…

* Slide based on slides by A. van Deursen, Domain Engineering, 2001

*

�9SNEAK PREVIEW

DOMAIN MODELLING – DOMAIN ANALYSIS

DOMAIN ANALYSIS

Captures domain knowledge of experts for related class of systems

Supports software reuse by capturing domain expertise and
understanding

Method for discovering and representing commonalities among
related software systems

e.g., common capabilities and data

Feature-Oriented Domain Analysis as particular domain analysis
technique

* [Prieto-Diaz1990] Ruben Prieto-Diaz, Domain Analysis: An Introduction.
ACM SIGSOFT Software Engineering Notes 15(2):47-54, April, 1990.

*

�10

DOMAIN MODELLING – DOMAIN ANALYSIS

FEATURE-ORIENTED DOMAIN ANALYSIS (FODA)

FODA is a technique used
since ~30 years for
modelling the common
and variable aspects of
systems

Different FODA models
and their extensions have
been proposed over these
years

* Slide based on slides by R. Capilla, Variability in the Context, 2018

*

�11

DOMAIN MODELLING – DOMAIN ANALYSIS

FEATURE-ORIENTED DOMAIN ANALYSIS (FODA)

Primary focus is the identification of prominent or distinctive
features of software systems in a domain

Commonalities = what features all systems in the domain
have in common

Variabilities = distinguishing features between different
systems in the domain

Leads to the creation of a set of products that define the domain

Analysis of a product family, as opposed to a single product
* [Kang & al. 1990] Kang & al., Feature-Oriented Domain Analysis (FODA):
Feasibility Study, Technical Report CMU/SEI-90-TR-21, 1990

*

�12

DOMAIN MODELLING – DOMAIN ANALYSIS

FEATURES

Features are "user-visible aspects or characteristics" of a
particular application domain

Define both common aspects of (the systems in) a domain

As well as differences between related systems in the domain

Describe mandatory, optional, or alternative characteristics of
these related systems

�13

DOMAIN MODELLING – DOMAIN ANALYSIS

LINK WITH SOFTWARE REUSE

Domain analysis provides a generic and reusable description
of the requirements of a class of systems.

Defines what is common across all systems in that domain.

These common features may be implemented as reusable
components that may be reused across different systems.

�14

DOMAIN MODELLING – DOMAIN ANALYSIS

SOME TERMINOLOGY

Application : a system which provides a set of general services for solving
some type of user problem.

Context : the circumstances, situation, or environment in which a particular
system exists.

(Application) domain : a set of current and future applications which share a
set of common capabilities and data.

Domain analysis : The process of identifying, collecting, organising, and
representing the relevant information in a domain based on the study of
existing systems and their development histories, knowledge captured from
domain experts, underlying theory, and emerging technology within the
domain.

* From [Kang & al. 1990]

*

�15

DOMAIN MODELLING – DOMAIN ANALYSIS

SOME TERMINOLOGY

Domain engineering: An encompassing process which includes domain analysis and the
subsequent construction of components, methods, and tools that address the problems
of system development through the application of the domain analysis products.

Domain model: A definition of the functions, objects, data, and relationships in a
domain.

Feature: A prominent or distinctive user-visible aspect, quality, or characteristic of a
software system or systems.

User: Either a person or an application that operates a system in order to perform a task.

Reusable component: A software component (including requirements, designs, code,
test data, etc.) designed and implemented for the specific purpose of being reused.

* From [Kang & al. 1990]

*

�16

DOMAIN MODELLING – DOMAIN ANALYSIS

DOMAIN ANALYSIS PROCESS

Three basic phases :

1. Context analysis defines the extent (or bounds) of the
domain under analysis

2. Domain modelling describes the problems to be
addressed by the software in the domain

3. Architecture modelling creates the overall software
architecture to implement a solution to the problems
in that domain

�17

DOMAIN MODELLING – DOMAIN ANALYSIS

1. CONTEXT ANALYSIS

A domain analyst interacts with users and domain experts to
establish the bounds of the domain

The analyst gathers sources of information for performing
the analysis

The results of this phase define the scope of the analysis.

This requires identifying the primary inputs and outputs of
software in the domain as well as software interfaces

�18

DOMAIN MODELLING – DOMAIN ANALYSIS

2. DOMAIN MODELLING

A domain analyst uses information sources and other products of the context analysis to
support the creation of a domain model

Acquiring domain information: experts, legacy systems, literature, prototyping, …

Domain model is reviewed by the user, domain expert, and requirements analyst

Domain model can consist of several artefacts:

A feature model to describe the software features (commonality & variability)

A dictionary to define a standard lexicon of domain terminology

An entity-relationship diagram to document main software entities and their
relationships

Other diagrams to specify generic software requirements, like control flow or data flow
diagrams

�19

DOMAIN MODELLING – DOMAIN ANALYSIS

3. ARCHITECTURE MODELLING

Using the domain model, the domain analyst then produces an
architecture model.

This model should be reviewed by the domain expert, the
requirements analyst, and the software engineer.

The user does not need to participate in this review.

Architecture model captures the overall structure of the
implementation of different software systems in the domain

different technologies possible: reusable components, domain-
specific languages, generators, application frameworks, …

�20

DOMAIN MODELLING – DOMAIN ANALYSIS

SUMMARY
Context analysis (scope of domain)

Domain Model

Architectures
Implement
applications
in domain

Create reusable resources (designs,
components, etc.)

Domain (representation
of problems in
domain)

(representation
of solutions in
domain)

New application New application

Domain
analysis

Tools and training
support

Figure 1-4: Domain Analysis Supports Software Development

Third, in performing the sample domain analysis no sufficiently mature automated tool sup-
port for domain analysis was available. While general purpose tools are available which can
support some domain analysis functions, and prototype tools have been built specifically to
support domain analysis activities, no tool support was available which was both robust and
specific to domain analysis. In addition, the purpose of the study was to demonstrate the
feasibility of a general domain analysis method, rather than the effectiveness of any partic-
ular support environment. As a result, primarily manual methods were used, with some spe-
cific automated support such as Statemate for some of the model types. As is discussed in
Section 8.1.3, the issue of effective knowledge representation will be a focus of future work.

Fourth, at the time the feasibility study began, the definition of the third and final phase of
the FODA method, architecture modelling, had not been completed. Therefore, while the
general approach to this phase is defined in this document, it was not applied to the sample
domain analysis. One effect of this is that the architecture modelling phase of the method is
not as specific in direction as the others because there has been no feedback to it from
actual use.

8 CMU/SEI-90-TR-21

*
* Source: Figure 1-4, page 8 of Kang & al., Feature-

Oriented Domain Analysis (FODA): Feasibility
Study, Technical Report CMU/SEI-90-TR-21, 1990

�21

B. FEATURE MODELLING

LINGI2252 – PROF. KIM MENS

DOMAIN MODELLING – DOMAIN ANALYSIS

FEATURE (DEFINITIONS)

“A prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems.” 
 [Kang & al. 1990]

“An increment of a program functionality” 
 [Bat05]

“A structure that extends and modifies the structure of a given
program in order to satisfy a stakeholder’s requirement, to
implement and encapsulate a design decision, and to offer a
configuration option” 
 [Apel & al. 2008]

�23

DOMAIN MODELLING – FEATURE MODELLING

FEATURE MODELLING

Used in domain analysis and software product lines (SPL)

to express commonalities and variabilities of a family of systems

in terms of the features they may offer

�24

DOMAIN MODELLING – FEATURE MODELLING

FEATURE MODEL – HIERARCHY

A hierarchically arranged set of features.

Typically represented using a tree-like graphical notation:

�25

Car

Transmission

Manual 
transmission

Automatic 
transmission

Engine Pulls trailerCar body

Electric Gasoline

Car

Transmission

Manual 
transmission

Automatic 
transmission

Engine Pulls trailerCar body

Electric Gasoline

DOMAIN MODELLING – FEATURE MODELLING

FEATURE MODEL – RELATIONSHIPS

Relationships between parent and child features 
are expressed using the following notations :

Car

Manual 
transmission

Automatic 
transmission

Engine Pulls trailerCar body

Electric Gasoline

�26

mandatory optional

alternative or

Transmission

DOMAIN MODELLING – FEATURE MODELLING

FEATURE MODEL – SEMANTICS OF RELATIONSHIPS

Mandatory features must be selected, whenever their
parent feature is

Used to express commonalities in the domain

All cars must have body, transmission and engine

Optional features can be selected, but do not have to

Used to express variabilities in the domain

Some cars have a hook to pull a trailer

�27

Concept
or feature

Subfeature

Concept
or feature

Subfeature

DOMAIN MODELLING – FEATURE MODELLING

FEATURE MODEL – SEMANTICS OF RELATIONSHIPS

Alternative features = only one of these
subfeatures can be selected

Represents an XOR between features

Every car must have either a manual or an
automatic transition, but cannot have both

OR features = one or more subfeatures can be
selected

At least one, but several are possible too

A car can have an electric engine or run on
gasoline; it can even have both if it’s a hybrid

�28

Concept

opt. 
feature

opt. 
feature

alternative

Concept

opt. 
feature

opt. 
feature

or

DOMAIN MODELLING – FEATURE MODELLING

CROSS-TREE CONSTRAINTS

Relationships between features not directly related in the
hierarchy of the feature tree

Can be expressed using predefined feature dependencies
between those features (implication, exclusion)

Or using more generic cross-tree constraints expressed in
textual notation with propositional logic

�29

DOMAIN MODELLING – FEATURE MODELLING

CROSS-TREE CONSTRAINTS – FEATURE DEPENDENCIES

“requires” or “implies”

when the inclusion of one feature depends on the inclusion of
another

(a mandatory feature is a special case of this, but implication relations
can also exist between more distant features in the feature hierarchy)

“exclusion”

when two features cannot co-exist

(an XOR is a special case of this, but mutual exclusions can also exist
between more distant features in the feature hierarchy)

�30

DOMAIN MODELLING – FEATURE MODELLING

CROSS-TREE CONSTRAINTS – FEATURE DEPENDENCIES
Example : Feature model of a mobile phone

�31

DOMAIN MODELLING – FEATURE MODELLING

CROSS-TREE CONSTRAINTS – PROPOSITIONAL LOGIC

(Illustrated here as redundant constraints expressing information
already present in the original feature model.)

�32

() ()

DOMAIN MODELLING – FEATURE MODELLING

TOOL SUPPORT

Tool support : FeatureIDE

an Eclipse plug-in for FOSD

�33

DOMAIN MODELLING – FEATURE MODELLING

TOOL SUPPORT

FeatureIDE supports constraints: not, and, or, implies, iff, ()

FeatureIDE tool even checks for redundant constraints

�34

() ()

DOMAIN MODELLING – FEATURE MODELLING

TOOL SUPPORT : ANOTHER EXAMPLE

Feature model of an e-shop software product line

�35

 Credit Card => High

For some reason the version of
FeatureIDE which I used in 2016
seemed to flag the additional
constraints as a “redundant”
constraint. In the new version of 2017
that issue seems to be resolved (on
the assistant’s computer)

DOMAIN MODELLING – FEATURE MODELLING

FEATURE MODEL

7.3.2.1. Feature Diagram
The feature diagram, shown in Figure 7-6, is an and/or tree of different features. Optional
features are designated graphically by a small circle immediately above the feature name,
as in partiallyOffScreen. Alternative features are shown as being children of the same
parent feature, with an arc drawn through all of the options, as is the case in
windowLayout. The arc signifies that one and only one of those features must be chosen.
The remaining features with no special notation are all mandatory.

The line drawn between a child feature and a parent feature indicates that a child feature
requires its parent feature to be present; if the parent is not marked as valid, then the child
feature for that system is in essence "unreachable." For example, if the windowLayout
were selected to be overlappedLayout, then the feature tiledColumns would be
"unreachable" for that specific system, since its parent tiledLayout would not be valid.

interiortiled

tiled

Layout

MoveOp
abort

Input
move

border

Icon
move

Feedback
interactive

Feedback
ghost

Feedback
opaque

moveResizeFeedback

erase
AfterBefore
erase

Erasure
move

Move
After
exposepartially

OffScreen

Move

Configuration
windowzapEffect

constrained
Move

windowLayout

overlapped
Layout

tiled
Columns Arbitrary

Figure 7-6: Features for the Window Manager Move Operation

To illustrate the use of the feature diagram Figure 7-7 shows a comparison of the move
operation features for two different existing window managers: X10/uwm and SunView. The
selected optional and alternative features are highlighted in the diagram with boxes. For ex-
ample, notice that the feature partiallyOffScreenWindows (abbreviated on the
diagram) is present in X10/uwm, but not present in SunView. Thus, when a SunView win-
dow is moved so that its border touches the edge of the screen, the window will stop moving
in that direction. In X10/uwm the window will continue to move, disappearing off the screen,
until the cursor hits the screen edge and stops the window from moving completely off.

This type of comparison information, which may be available in this graphical form or in the
catalogue form shown in Appendix C, makes the task of evaluating and comparing different

64 CMU/SEI-90-TR-21

*

* Source: Fig. 7-6, page 64 of Kang & al., Feature-
Oriented Domain Analysis (FODA): Feasibility
Study, Technical Report CMU/SEI-90-TR-21, 1990

�36

A slightly more 
elaborate example

systems straightforward. Certain types of information are more difficult to obtain from such a
display, such as knowledge of invalid feature combinations or underlying issues and
rationales. These types of information are discussed in the next two sections.

windowLayout

windowLayout

interior

interior

ArbitraryColumns
tiled

Layout
overlapped

Move
constrained

zapEffect window
Configuration

OffScreen
partially expose

After
Move

move
Erasure

erase
Before After
erase

moveResizeFeedback

opaque
Feedback

ghost
Feedback

interactive
Feedback

move
Icon

border

move
Input

abort
MoveOp

Layout

tiled

tiled

Move
X10/uwm

tiled

tiled

Layout

MoveOp
abort

Input
move

border

Icon
move

Feedback
interactive

Feedback
ghost

Feedback
opaque

moveResizeFeedback

erase
AfterBefore
erase

Erasure
move

Move
After
exposepartially

OffScreen

Configuration
windowzapEffect

constrained
Move

overlapped
Layout

tiled
Columns Arbitrary

SunView
Move

Figure 7-7: Comparison of Move Operation Features in X10/uwm and SunView

7.3.2.2. Composition Rules
Features are related to one another primarily through the use of composition rules, which
are a type of constraint on the use of a feature. Composition rules have two forms: (1) one
feature requires the existence of another feature (because they are interdependent), and (2)
one feature is mutually exclusive with another (they cannot coexist).

The textual representation for these rules is as follows:

<feature1> (‘requires’ | ‘mutex-with’) <feature2>

An example of a composition rule used in the window manager domain is:

moveIcon requires hasIcons

In Section 7.1.1 these window manager capabilities were defined. Composition rules may be
obvious, given an understanding of the domain. In this case a window manager cannot have

CMU/SEI-90-TR-21 65

DOMAIN MODELLING – FEATURE MODELLING

FEATURE MODEL

*

* Source: Fig. 7-7, page 65 of Kang & al., Feature-
Oriented Domain Analysis (FODA): Feasibility
Study, Technical Report CMU/SEI-90-TR-21, 1990

�37

DOMAIN MODELLING – FEATURE MODELLING

FEATURE MODEL SEMANTICS

The semantics of a feature model is its set of valid configurations

A configuration is an instance of the feature model with a set
of features selected

A configuration is valid if it respects the semantics imposed by
the relationships and constraints:

mandatory features must be selected; optional features may
be selected; exactly one must be selected for alternative
features; at most one for exclusive features; etc.

�38

Car

Transmission

Manual 
transmission

Automatic 
transmission

Engine Pulls trailerCar body

Electric Gasoline

DOMAIN MODELLING – FEATURE MODELLING

FEATURE MODEL CONFIGURATION

In our car feature model, a configuration represents a
particular car

Here’s a valid configuration:
Car

Manual 
transmission

Automatic 
transmission

Engine Pulls trailerCar body

Electric Gasoline

�39

Transmission

Car

Transmission

Manual 
transmission

Automatic 
transmission

Engine Pulls trailerCar body

Electric Gasoline

DOMAIN MODELLING – FEATURE MODELLING

FEATURE MODEL CONFIGURATION

Here’s an invalid configuration

Why?

Car

Manual 
transmission

Automatic 
transmission

Engine Pulls trailerCar body

Electric Gasoline

�40

Transmission

DOMAIN MODELLING – FEATURE MODELLING

FEATURE MODEL SEMANTICS

A feature model is inconsistent if it has no valid configurations

Two feature models are equivalent if they have the same set of
valid configurations

A commonality is a feature that appears in all of the model’s
valid configurations

A variability is a feature that appears only in some of the
configurations

i.e., optional, alternatives or or-features

�41

DOMAIN MODELLING – FEATURE MODELLING

FEATURE MODEL ANOMALIES

We define an anomaly in a feature model as either a redundancy
or inconsistency in the model

Anomalies are typically caused by evolution of the model

A feature model contains redundancy, if semantic information is
modelled in multiple ways

In general, this is not preferable and should be avoided

Inconsistencies are contradictions within a feature model

E.g., a feature that cannot be selected in any configuration

�42

* [Kowal&al2016] M. Kowal, S. Ananieva, T. Thüm. Explaining
Anomalies in Feature Models. GPCE Conference, 2016.

*

DOMAIN MODELLING – FEATURE MODELLING

POSSIBLE FEATURE MODEL ANOMALIES

Dead Features : if they can never be selected in any variant of the
product line.

This anomaly is problematic as software artefacts could be
developed but never used.

False-Optional Features : if the selection of its parent makes the
feature itself selected as well, even though it is defined as optional
and not mandatory.

Redundant Constraints : a cross-tree constraint is redundant if its
removal does not change the validity of configurations.

�43

* [Kowal&al2016] M. Kowal, S. Ananieva, T. Thüm. Explaining
Anomalies in Feature Models. GPCE Conference, 2016.

*

DOMAIN MODELLING – FEATURE MODELLING

POSSIBLE FEATURE MODEL ANOMALIES

�44

* [Kowal&al2016]

*In this example,
Bluetooth and

Manual are dead
features.

Why?

DOMAIN MODELLING – FEATURE MODELLING

POSSIBLE FEATURE MODEL ANOMALIES

�45

* [Kowal&al2016]

*In this example,
Navigation is a
false-optional

feature.

Why?

In this example Ports is a false-optional feature too but that’s
hard to see, especially because the feature does not even
occur in cross-tree constraints. The article explains how SAT
solvers can be used to find such problems.

DOMAIN MODELLING – FEATURE MODELLING

POSSIBLE FEATURE MODEL ANOMALIES

�46

* [Kowal&al2016]

*In this example,
there are also three

redundant
constraints.

Do you see why?

DOMAIN MODELLING – FEATURE MODELLING

POSSIBLE FEATURE MODEL ANOMALIES

Void Feature Models : a feature model for which it is not
possible to derive any valid configuration.

Adding the constraint Carbody ∧ ¬Gearbox to the
previous example would result in a void feature model.

Why?

�47

* [Kowal&al2016] M. Kowal, S. Ananieva, T. Thüm. Explaining
Anomalies in Feature Models. GPCE Conference, 2016.

*

DOMAIN MODELLING – FEATURE MODELLING

POSSIBLE FEATURE MODEL ANOMALIES

�48

* [Kowal&al2016]

*

Adding the constraint
Carbody ∧ ¬Gearbox

to this example
results in a void
feature model.

Do you see why?

Because the constraint

Carbody ∧ ¬Gearbox

causes a logical inconsistency

with the constraint

Carbody ∧ Gearbox

DOMAIN MODELLING

LEARNING OBJECTIVES

▸ software product lines

▸ economy of scope

▸ domain analysis

▸ feature-oriented domain analysis

▸ link with software reuse

▸ domain analysis process

▸ feature

▸ commonality

▸ variability

▸ feature model(ling)

▸ feature relationships (mandatory,
obligatory, ...)

▸ feature dependencies

▸ cross-tree constraints

▸ FeatureIDE tool

▸ feature model semantics

▸ feature model anomalies

DOMAIN MODELLING

FURTHER READING

Prieto-Diaz, Domain Analysis: An Introduction. ACM SIGSOFT Software Engineering Notes 15(2):
47-54, April, 1990.

Kang & al., Feature-Oriented Domain Analysis (FODA): Feasibility Study, Technical Report CMU/
SEI-90-TR-21, 1990

Czarnecki & Eisenecker, Generative programming: Methods, Tools and Applications, Addison
Wesley, 2000 (Chapter 2: Domain Engineering; Chapter 4: Feature Modeling; and examples in
Chapters 12, 13 & 14.)

Batory, Feature models, grammars, and propositional formulas, International Conference on
Software Product Lines (2005), Springer, pp. 7–20.

Apel, Lengauer, Möller & Kästner. An algebra for features and feature composition, International
Conference on Algebraic Methodology and Software Technology (2008), Springer, pp. 36–50.

Matthias Kowal, Sofia Ananieva, Thomas Thüm. Explaining Anomalies in Feature Models. GPCE
Conference, 2016.

�51

DOMAIN MODELLING

POSSIBLE QUESTIONS

8.Define, in your own words, what a software product line is.

9.Explain the difference between economies of scale and
economies of scope, in the context of software product lines.

10.Explain the main purpose of domain analysis. Explain and
discuss the different phases of the domain analysis process.

11.What is (the goal of) feature-oriented domain analysis
(FODA)? What is a feature? How does this relate to software
product lines? Explain.

DOMAIN MODELLING

POSSIBLE QUESTIONS

12.Explain and illustrate, on a simple example, the feature modelling
notation (as well as the different kinds of feature relationships, feature
dependencies and cross-tree constraints).

13.What is a configuration of a feature model? When is a configuration said
to be valid? Explain and illustrate on an example. When is a feature model
said to be inconsistent?

14.Explain, in the context of feature modelling, the notions of commonality
and variability. Illustrate with a concrete example.

15.What is a feature model anomaly? What kinds of feature model anomalies
exist? Give a concrete example of each on a simple feature model.

CLASS… IS… DISMISSED.

https://vimeo.com/35864017

