
SOFTWARE MAINTENANCE 
& EVOLUTION

LINGI2252 – PROF. KIM MENS

 
CONTEXT-ORIENTED PROGRAMMING

LINGI2252 – PROF. KIM MENS

* Slides based on joint research with Dr. Sebastian Gonzalez, Dr. Nicolas Cardozo & others

*

Why

is there a need for dynamic
adaptation to context ?

Traditional Computer Systems

“Traditionally, hardware and software were input-
output systems that took input explicitly given to
them by a human, and acted upon that input
alone to produce an explicit output.  
Now, this view is seen as too restrictive. …”

Henry Lieberman & Ted Selker

system
input output

4

Out of Context: Computer Systems That Adapt To, and Learn From, Context.  
IBM Systems Journal, Vol 39, Nos 3&4, p.617-631, 2000 [Lieberman&Selker2000]

http://dl.acm.org/citation.cfm?id=1011431

Context-Aware Systems

“… Smart computers, intelligent agent software,
and digital devices of the future operate on data
that is not explicitly given to them, data that they
observe or gather for themselves. These operations
may be dependent on time, place, weather, user
preferences, or the history of interaction.  
In other words: context.”

Henry Lieberman & Ted Selker

5

Out of Context: Computer Systems That Adapt To, and Learn From, Context.  
IBM Systems Journal, Vol 39, Nos 3&4, p.617-631, 2000 [Lieberman&Selker2000]

http://dl.acm.org/citation.cfm?id=1011431

Evolution Of Hardware 6

fixed (1980)
mainframes

servers

desktops 
consoles

portable (1990)
laptops 

netbooks

subnotebooks

mobile (2000)
handhelds 

tablets 
smartphones

‣ CPU load
‣ available memory (RAM)
‣ available storage (HD)
‣ date and time
‣ connected peripherals
‣ network peers

‣ touch screen
‣ geographical location
‣ GPS signal quality
‣ accelerometer

‣ wi-fi signal quality
‣ battery power
‣ camera
‣microphone
‣ light sensor

+

+

…

text (1970)
BSD

SunOS

MS DOS

GNU/Linux

graphical (1980)
Mac OS

Amiga OS

Windows 

KDE, GNOME

web (1990)
static

dynamic

web 2.0

mashups

mobile (2000)
Symbian OS

Windows CE

iOS

Android

Evolution Of Software 7

‣ available libraries
‣ available hardware services
‣ available network services
‣ user task
‣ user expertise
‣ user preferences
‣ user privileges
‣ task urgency
‣ operation modes
‣ logging
‣ debugging
‣ degraded
‣ free trial
‣ partial failure
‣ domain specific
‣ [3D] wireframe / solid view
‣ [Maps] satellite / schematic
‣ ...

The Future Is Here 8

“smart” objects

Need For Context-Aware Computing

“Computer systems will increasingly need to be  
sensitive to their context  

to  
serve their users better.”

Eli Rohn

9

Predicting Context Aware Computing Performance.  
Ubiquity, p.1-17, Feb. 2003 [Rohn2003]

http://ubiquity.acm.org/article.cfm?id=764011

Context-Aware Systems

Idea appeared ~ late 1980s; increasingly studied since ~ 2000.

10

3. The general characteristics of the articles

3.1. Classification of articles by publication year

The number of articles by publication year is depicted in Fig. 2.
Numerous context-aware articles have grown considerably since
2000. The number of articles in 2007 have becomes 7 times more
than the number of articles in 2000. The number of articles from
2001 to 2004 had been increased continuously, and the number
of articles from 2004 to 2006 has been almost the same. It is abso-
lute that the concern about context-aware systems was increased
and will be continued.

3.2. Classification of articles by online database

The article by online database is categorized in Table 2. There
are a total of 181 articles from online databases. We use 7 online
databases to search the articles. In Table 2, IEEE Xplore is the high-
est percentage of articles (74 articles, 31%), because it offers arti-
cles of many journals (IEEE Pervasive Computing, IEEE Internet
Computing, IEEE Wireless Communications and IEEE Transactions
on Software Engineering) which have subject relevant to context-
aware systems. Science Direct stores journal articles of various
study fields, therefore this database is the second highest of articles
(60 articles, 25.6%). Other online databases are Springer Link On-
line Libraries (57 articles, 23.9%), Ingenta Journals (18 articles,
8%), ACM Digital Library (16 articles, 7%), Wiley InterScience (9
articles, 4%) and EBSCO (Electronic Journal Service) (3 articles,
1%). When the same article is found repetitively among different
online database, the article number of database having more num-
ber of articles is increased.

3.3. Classification of articles by journal

The articles by journal articles are categorized in Table 3. There
were 65 journals that published context-aware articles. Most of

them were related to the computer science, electronic engineering
and information management. Table 3 specifies journals that pub-
lished four or more context-aware articles and the others that pub-
lished only one article or no more than 3 related with context-
aware systems are omitted. Pervasive computing and ubiquitous
computing is closely connected with context-aware computing.
Therefore, journals which focus on pervasive computing or ubiqui-
tous computing have published articles relevant to context-aware
systems. As Table 3 shows, IEEE Pervasive Computing published
the most articles on context-aware systems (23 articles, 10%). Ex-
pert Systems with Applications and Personal and Ubiquitous Com-
puting published 10 articles (4%). Distribution of articles according
to the journal shows that various journals have published articles
relevant to context-aware systems.

4. Classification framework

4.1. Abstract architecture of context-aware systems

The abstract architecture of context-aware systems is drawn
based on the literature that explores the context-aware prototype,
systems, and application to offer classification criteria for dividing
the literature appropriately. To make the abstract architecture, SO-
CAM, ACAI, NAMA, PeCAN, X-CAF, CyberDesk, WebPADS, CAPIAs,
Hycon service framework, Culliver’s Genie, Intelligent Agent
framework, context-aware agent architecture, reference frame-
work for multi-target user interfaces, etc. are reviewed in detail.
As the results of literature review related with context-aware
architecture, we present general abstract layer architecture of con-
text-aware systems. As Fig. 3 shows, this architecture consists of
four layers: (1) network layer involves a network supporting con-
text-aware systems and sensor collecting low-level of context
information; (2) middleware layer manages processes and stores
context information; (3) based below layers, application layer pro-
vides users with appropriate service; and (4) to offer suitable inter-

Fig. 2. Classification of articles by publication year.

Table 2
Classification of articles by publication year.

Online database Number of articles

IEEE Xplore 74
Science Direct 60
Springer Link Online Libraries 57
Ingenta Journals 18
ACM Digital Library 16
Wiley InterScience 9
EBSCO (Electronic Journal Service) 3

Total 237

Table 3
Classification of articles based on the journal.

Journal articles Number of articles

IEEE Pervasive Computing 23
Personal and Ubiquitous Computing 10
IEEE Internet Computing 6
Wireless Personal Communications 5
IEEE Intelligent Systems 5
Mobile Networks and Applications 5
IEEE Transactions on Software Engineering 4
The Others 139
Expert Systems with Applications 10
Computer Communications 6
Journal of Systems and Software 6
Pervasive and Mobile Computing 5
World Wide Web 5
IEEE Wireless Communications 5
Interacting with Computers 4

Total 237

Fig. 3. Abstract layer architecture of context-aware systems.

J.-y. Hong et al. / Expert Systems with Applications 36 (2009) 8509–8522 8511

Jong-yi Hong, Eui-ho Suh, Sung-Jin Kim  
Context-Aware Systems: A literature review and classification.  

Expert Systems with Applications 36, 2009 [Hong&al2009]

https://www.researchgate.net/publication/220219749_Context-aware_systems_A_literature_review_and_classification

Context-Aware Systems

Studied from a variety of research angles [Hong&al2009]:

‣ conceptual: guidelines, frameworks, algorithms, context
reasoning and context data management

‣ networks: network protocols, sensor networks, …

‣ middleware for distributed context-aware applications

‣ applications: studies and 
development of dedicated 
context-aware applications 
(e.g., a smart tour guide)

‣ user-interface technology 
and usability studies

11

! Facilitating knowledge sharing and reuse in an open and
dynamic distributed systems (Kwon, Choi, et al., 2005; Kwon,
Yoo, et al., 2005; Gruber, 1993).

! Deriving fresh knowledge and facts based on reasoning contex-
tual data and information by using inference engines.

! Allowing devices and agents not expressly designed to work
together to interoperate, achieving ‘‘serendipitous interoperabil-
ity” (Wang, Dong, Chin, Hettiarachchi, & Zhang, 2004).

Although some research only focuses on ontology, the number
is very few. Ontology is generally used for reasoning and express-
ing context data. Therefore, they do not need to have a separate
category for ontology.

5.2. Network layer

As shown in Table 6, we categorize the network infrastructure
layer into internet protocol, handoff management, sensing, net-
work requirements and network implementation. Context-aware
computing needs to dynamically adapt to changes in this context
and connect entities based on network. Therefore, many researches
are conducted to offer appropriate network for providing context-
aware computing. Internet protocol category involves presenting
mechanisms and design of session initiation protocol (SIP), mobile
IPv6, an integral part of constructing self-configuring mobile ad
hoc networks and object discovery. Handoff management category
has article about the process of transferring an ongoing call or data
session from one channel connected to the core network to an-
other. Article topic of handoff management category is treating
heterogeneous network for seamless communication environ-
ments. The sensing category is responsible for capturing, abstract-
ing and acquiring context information of the situations in the
environment. When implementing context-aware systems, the ba-
sic idea is to use the sensor data and predict the current situation.
Therefore, the sensing category consists of sensing algorithm, sens-
ing technology and wearable sensing mechanism. Network
requirements category means collecting requirements for the
adaptation method which can support seamless computing infra-
structures, framework for integration for user services out to the

Table 8
References of application and service layer.

Classification criteria References

Applications and
services

Smart
space

Home Baek, Lee, Lim, and Huh (2005), Intille (2002), Schulzrinne, Wu, Sidiroglou, and Berger (2003)
Hospital Agarwal, Joshi, Finin, Yesha, and Ganous (2007), Bottazzi, Corradi, and Montanari (2006), Favela, Rodríguez, Preciado, and

González (2004), Favela et al. (2007), Kjeldskov and Skov (2007), Muñoz, Rodriguez, Favela, Martinez-Garcia, and González
(2003), Rodríguez, Favela, Martínez, and Muñoz (2004)

Class
room

Sung et al. (2005)

Tour guide Bellotti, Berta, De Gloria, and Margarone (2005), Cano, Manzoni, and Toh (2006), Cheverst, Mitchell, Davies, and Smith (2000),
Cheverst, Smith, Mitchell, Friday, and Davies (2001), O’Hare and O’Grady (2003), Pashtan, Heusser, and Scheuermann (2004)

Information
systems

Celentano and Gaggi (2006), Kwon (2006a), Kwon, Yoo, et al. (2005), Kwon, Yoo, and Suh (2006), Norrie et al. (2007), Signer,
Grossniklaus, and Norrie (2007), Wilson, Doyle, Weakliam, Bertolotto, and Lynch (2007)

Communication
systems

Fogarty, Lai, and Christensen (2004), Goularte, Pimentel, and Moreira (2006), Raento, Oulasvirta, Petit, and Toivonen (2005),
Ranganathan, Campbell, Ravi, and Mahajan (2002), Schmidt, Takaluoma, and Mantyjarvi (2000), Schilit, Hilbert, and Trevor
(2002), Sumi and Mase (2000), Sumi and Nishida (2001), Udugama, Kuladinithi, Gorg, Pittmann, and Tionardi (2007), Yuan and
Chen (2007)

M-commerce Anagnostopoulos, Tsounis, and Hadjiefthymiades (2007), Becerra-Fernandez, Cousins, and Weber (2007), Bouvin, Christensen,
Frank, and Hansen (2003), Broens, Halteren, Sinderen, and Wac (2007), Chakraborty et al. (2007), Genco, Sorce, Reina, and
Santoro (2006), Kwon (2003), Kwon and Sadeh (2004), Kwon, Shin, and Kim (2006), Maiden, Omo, Seyff, Grunbacher, and
Mitteregger (2007), Mandato, Kovacs, Hohl, and Amir-Alikhani (2002), Riva and Toivonen (2007), Roussos, Marsh, and Maglavera
(2005), Skov and Høegh (2006), Stylianos, Nikia, Kia, and Christos (2007), Syukur and Loke (2006),Wac, Halteren, Bults, and
Broens (2007), Wohltorf, Cissée, and Rieger (2005), Yu et al. (2006)

Web service Blake, Kahan, and Nowlan (2007), Debaty, Goddi, and Vorbau (2005), Ceri, Daniel, Facca, and Matera (2007), Gandon and Sadeh
(2004), Kanter (2003), Kwon (2006b), Kwon, Choi, et al. (2005), Kwon, Yoo, et al. (2005), Lee (2007), Pashtan, Kollipara, and
Pearce (2003)

Table 9
References of user infrastructure layer.

Classification criteria References

User infrastructure Interface Alexander and Matthias (2006), Bell, Feiner, and Höllerer (2002), Calvary et al. (2003), Hatala and Wakkary
(2005), Hong, Dickson, Chiu, Shen, and Kafeza (2007), Korhonen et al. (2007), Kurvinen, Lähteenmäki,
Salovaara, and Lopez (2007), Lieberman and Chu (2007), Lum and Lau (2002), Mäntyjärvi and Seppänen
(2003), Rehman, Stajano, and Coulouris (2007), Selker (2004), Smailagic and Siewiorek (2002)

Usability Barnard, Yi, Jacko, and Sears (2005), Burrell and Gay (2002), Kaasinen (2003)

Fig. 5. Distribution of articles number by year and classification framework.

J.-y. Hong et al. / Expert Systems with Applications 36 (2009) 8509–8522 8515

Focusses on the programming angle:

Enabling context-aware software adaptability through a
programming language engineering approach:

‣ dedicated programming languages to express 
context-driven behaviour adaptation

‣ contexts and behavioural variations to context 
as first class language citizens

Context-Oriented Programming 12

COP

… through a programming
language engineering approach

enables context-driven
behaviour adaptability …

Some Definitions
“A software system is context-aware 

if it can extract, interpret and use context information  
and adapt its functionality to the current context of use.”

[Rohn2003] 

“Context is everything 
but the explicit input and output to a system.”

[Lieberman&Selker2000]

“A context-oriented software system is  
a context-aware system that has an explicit representation  
of context and contextual variations as first class citizens.”

[my definition]

14

Enabling Context-Driven Behaviour Adaptability

How to build software systems that can adapt their
behaviour dynamically …

… according to detected context changes in their
surrounding environment ?

One possible approach :

context-oriented programming
a programming language engineering approach

Applications should become more aware of their execution context,
and should adapt dynamically to such context to provide services

that match their clients’ needs to the best extent possible.

environmental properties

humidity, light, noise, lighting

network peers & services

projector, GPS, storage

internal state

load, time, battery

spatial state

position, orientation,
movement

location semantics

nearby objects & facilities

users

expertise, preferences

Context Is Key 16

take advantage of room projector for presentation
peer service

decrease playback quality when battery power is low
internal state

user task
show parking spots and gas stations (only) when driving

environmental conditions
give more detailed indications when visibility is low

disable phone ringtone in quiet places
location semantics

Adaptation Examples 17

So Why Aren’t We There Yet? 18

Richard Gabriel, 2006

Software systems today are produced
according to a manufacturing model: 
a finished product is constructed at the
factory and shipped to its final
destination where it is expected to act
like any other machine —reliable but
oblivious to its surroundings and its own
welfare.

we still program this...

using the
programming models

conceived for this....

(2010) (1980)

Mindset Mismatch 19

Current programming techniques and design principles invite
programmers to think in a way that is mostly oblivious of the physical,
technical and human environment in which the software will be used.

Many chances of delivering improved services are thus missed.

?
?

?
?

?

?

Current Mindset 20

programming in isolation

programming with context

A new paradigm is needed that helps overcoming this limiting vision
by putting programmers in the right state of mind to build

dynamically adaptable applications from the ground up.

Needed Mindset 21

Conditional statementsDesign patternsPlugin architectures

from context-blind systems to context-oriented systems

forward!

?
?

??

?

?

Mindset Shift 22

Adaptation Example 23

context behaviour

ringtonedefault

call reception behaviour

Adaptation Example 24

context behaviour

vibrationquiet

call reception behaviour

Adaptation Example 25

off-hook call waiting signal

context behaviour

call reception behaviour

Adaptation Example 26

context behaviour

call reception behaviour

Paradigmatic Shortcomings 27

class phone {

method receive (call) {

if (phone.isOffHook())

play(phone.callWaitingSignal(), 2); 

else if (phone.environment().acoustics().isQuiet())

phone.vibrate(5); 

else if (phone.user().isUnavailable())

forwardCall(call, phone.forwardNumber());

else

play(phone.ringTone(), 10);

}

conditional statements

default

phone user

phone environment

phone status

class phone {

method receive (call) {

if () then

else if () then

else if () then

else

}

Paradigmatic Shortcomings 28

conditional statements

Adaptable

Tangled
Scattered
Fixed
No reuse
Complex logic

Paradigmatic Shortcomings 29

class Phone 
{ attribute strategy;
 method receive (call)

 { strategy.receive(call); } }

class UnavailableStrategy 
{ method receive (call) { ... } }

class OffHookStrategy 
{ method receive (call) { ... } }

class QuietStrategy 
{ method receive (call) { ... } }

class DefaultStrategy 
{ method receive (call) { ... } }

Phone
QuietStrategy

OffHookStrategy

UnavailableStrateg

DefaultStrategy

strategy.receive(call);

special software architectures

Modular
Open

Infrastructural burden
Anticipated adaptation points

E.g., Strategy 
design pattern

Paradigmatic Shortcomings 30

Software rigidness 
The variability points of the application are hard-
coded in its architecture. It is difficult to add new
variants non-invasively.

Lack of modularity 
Tight coupling between core business logic and
infrastructural code to manage the variants makes the
software difficult to maintain and evolve.

Mindset mismatch 
Programming tools make programmers oblivious of
the context in which their applications will run.
Programmers are not put in the right state of mind to
build adaptable software.

General Symptoms (Recap)

Hypothesis 31

current programming tools

adaptive systems

we need to reengineer our tools

A major obstacle for adaptability is the unavailability of appropriate
context-aware programming languages and related tool sets.

Side Comment 32

programming abstractions matter

tool 1: C#
using System;

public class Program
{
 static long Factorial(long number)
 {
 if(number <= 1)
 return 1;
 else
 return number * Factorial(number - 1);
 }

 static int Main(string[] args) {
 Console.WriteLine(Factorial(5));
 return 0;
 }
}

tool 2: Ruby
def fact(n)
 n <= 1 ? 1 : n * fact(n - 1)
end

fact(5)

n! = { 1
n(n-1)!

if n = 0
if n > 0

maintainability

domain: math

Side Comment

A high-level language frees a program from
much of its accidental complexity; it eliminates

a whole level of complexity that was never
inherent in the program at all.

programming language engineering

33

Develop programming tools that reduce accidental complexity
in the expression of context-driven behaviour adaptation

Frederick Brooks, 1987

essential complexity ≠
accidental complexity

What?
context-driven 

software adaptability through
dedicated language abstractions

and composition mechanisms

2008 20132010

Subjective-CAmbience

Context Traits

“Our ambition is to provide languages, formalisms, models and tools to support the
development of software systems that can dynamically adapt their behaviour to the current
execution context, to provide the most appropriate behaviour according to that context.”

Some Context-Oriented Programming Languages 35

S. GONZALEZ, K. MENS, A. CADIZ.  
Context-Oriented Programming with the Ambient Object System.  
Journal of Universal Computer Science, 14(20):3307–3332, 2008.  

S. GONZALEZ, N. CARDOZO, K. MENS, A. CADIZ, J-C. LIBBRECHT, J. GOFFAUX.  
Subjective-C: Bringing Context to Mobile Platform Programming. International
Conference on Software Language Engineering 2010.  

S. GONZALEZ, K. MENS, M. COLACIOIU, W. CAZZOLA.  
Context Traits: dynamic behaviour adaptation through run-time trait recomposition.  
International conference on Aspect-Oriented Software Development 2013.

Subjective-CAmbience
Context Traits

2008 20132010

https://www.researchgate.net/publication/220349673_Context-Oriented_Programming_with_the_Ambient_Object_System
https://www.researchgate.net/publication/221055377_Subjective-C_Bringing_Context_to_Mobile_Platform_Programming
https://www.researchgate.net/publication/237202189_Context_Traits_Dynamic_Behaviour_Adaptation_through_Run-Time_Trait_Recomposition

Some Context-Oriented Programming Languages 36

Subjective-C

2010
* cited by 66 according to Google Scholar on 10.12.2017

*

S. GONZALEZ, K. MENS, A. CADIZ.  
Context-Oriented Programming with the Ambient Object System.  
Journal of Universal Computer Science, 14(20):3307–3332, 2008.  

S. GONZALEZ, N. CARDOZO, K. MENS, A. CADIZ, J-C. LIBBRECHT, J. GOFFAUX.  
Subjective-C: Bringing Context to Mobile Platform Programming. International
Conference on Software Language Engineering 2010.  

S. GONZALEZ, K. MENS, M. COLACIOIU, W. CAZZOLA.  
Context Traits: dynamic behaviour adaptation through run-time trait recomposition.  
International conference on Aspect-Oriented Software Development 2013.

https://www.researchgate.net/publication/220349673_Context-Oriented_Programming_with_the_Ambient_Object_System
https://www.researchgate.net/publication/221055377_Subjective-C_Bringing_Context_to_Mobile_Platform_Programming
https://www.researchgate.net/publication/237202189_Context_Traits_Dynamic_Behaviour_Adaptation_through_Run-Time_Trait_Recomposition

Context-Driven System Architecture 37

external context
effectcontext

information

ActuatorsSensors

arbitrated 
context
changes

World

Context
Discovery

Context
Management

Active
Context

internal

Application
Behaviour

Contexts As Situation Reifiers 38

no semantics

computationally
accessible data

Battery charge = 220 mAh

Idle cycles = 100 MHz

User agent = “Mozilla/5.0...”

Z axis = 0.03

action can be taken

well-defined
situations

Context
Discovery

contexts are reified situations
for which adapted application behaviour can be defined

Low battery charge

High CPU load

Firefox

Landscape orientation

LowBattery = new Context();

window.addEventListener(‘batterystatus’,
function (battery) {

if (battery.level < 30)
LowBattery.activate();

else
LowBattery.deactivate(); });

… in JavaScript

Context
Discovery

39

Label

Minimalistic Case Study

Standard Widget Spec

UILabel class
drawTextInRect:
Draws the receiver’s text in the specified rectangle.
- (void)drawTextInRect:(CGRect)rect
Parameters
rect

The rectangle in which to draw the text.
Discussion
You should not call this method directly. This method
should only be overridden by subclasses that want to
modify the default drawing behavior for the label’s text.
Availability
Available in iOS 2.0 and later.
Declared In
UILabel.h

40

Main Idea 41

@implementation UILabel (color)
@contexts Landscape
- (void)drawTextInRect:(CGRect)rect {
 self.textColor = [UIColor greenColor];
 return @resend();
}
@end

Open classes
Objective-C

COP
Subjective-C

✓ Adaptation of any existing component

✓ No access to original source code needed

✓ Adaptations can be cleanly modularised

Application
Behaviour

La
be

l

Context Dependencies

Implication Antwerp Belgium Antwerp => Belgium

Suggestion ClassRoom Quiet ClassRoom -> Quiet

Requirement HDVideo BatteryHigh HDVideo =< BatteryHigh

42

Context
Management

Combination Driving + UKDriving+UK
Driving

UK

Exclusion Landscape Portrait Landscape >< Portrait

Context Dependency Graph 43

X

X

X

X

X

X X

Summary 44

✓ Clean application logic

✓ Clean modularisation of adaptations

✓ Context reification and management

✓ Run-time behaviour adaptation of any component (incl. 3rd party)

✓ No need for recompilation or access to original source code

✓ Maximises adaptation points while avoiding architectural burden

✓ Scoped adaptations

language abstractions for adaptation to context … with sound technical underpinnings

@context Landscape
-id behaviour {

 // context-specific logic
} Objects

Open Classes
Reflection

Subjective Programming
Context-Oriented Programming

Subjective-C

Some Case Studies 45

Case Study: On-Board Car System 46

N. CARDOZO, K. MENS, S. GONZALEZ, P.-Y. ORBAN, W. DE MEUTER. Features on Demand.
International Workshop on Variability Modelling of Software-Intensive Systems, 2014.

Context Traits

https://www.researchgate.net/publication/261703622_Features_on_Demand

Case Study: On-Board Car System 47

Context Traits

P.-Y. ORBAN. Using Context-Oriented Programming for Building 
Adaptive Feature-Oriented Software for Car On-Board Systems.  

Master thesis in Computer Science, Université catholique de Louvain, 2013

Case Study: On-Board Car System 48

Context Traits

location = EU

Display speed reading using 
the metric system units

Context-specific features

Case Study: On-Board Car System 49

location = EU

Context changes trigger behavioural adaptation

location = UK

Case Study: On-Board Car System 50

location = EU location = UK

Display speed reading using 
the metric system units

Display speed reading using 
the imperial system units

Context TraitsImperialSystem = Trait({
 var CONV_RATIO = 0.621371192;
 getSpeed: function(msg) {
 _val = this.proceed();
 Math.round _val * CONV_RATIO; }

 getHtml: function() {
 display.setGaugeDisplay(this.proceed().replace("km/h", "mph")); }
 });

How?

Subjective-CAmbience

2008 20132010

Context Traits

implementation of context-driven 
software adaptability through …

… method dispatch … and method pre-dispatch.

Method Pre-Dispatch 52

Whenever a context is (de)activated

For every class c and selector s the context adapts, 

find all active* methods

M(c, s)={ m1, m2, m3, ..., mn }

Reorder them according to specificity

m1 < m2 < m3 < ... < mn

and deploy the first one m1  

‣ m1 is the most specific implementation for the current context

‣ resend invokes the remaining methods in order

‣ mn is (usually) the default implementation

* methods defined for contexts that are currently active

Method Dispatch 53

Whenever a message is sent  
(to receiver r, with selector s and arguments a)

Find all active* methods that match the message

M(r,s,a) = { m1, m2, m3, ..., mn }

Reorder them according to specificity

m1 < m2 < m3 < ... < mn

and invoke the first one m1  

‣ m1 is the most specific implementation for the current context

‣ resend invokes the remaining methods in order

‣ mn is (usually) the default implementation

* methods defined for contexts that are currently active

Comparison Of Implementation Techniques

behavioural reflection

method invocation

message sending

Method Dispatch

M(r,s,a)={ m1, m2, m3, ..., mn }

(more powerful)

trigger

action

mechanismstructural reflection

method deployment

context activation

Method Pre-Dispatch

(more commonly supported)

M(c, s)={ m1, m2, m3, ..., mn }

Method Pre-Dispatch 55

Is the method order always defined?
‣ Could there be no applicable methods?

➡ default implementation

‣ Could there be non-comparable methods?

➡ the order should be total

➡ if not, we’re in trouble

M(r,s,a)={ m1, m2, m3, ..., mn }

M(c, s)={ m1, m2, m3, ..., mn }

Method Pre-Dispatch 56

Subjective-C

Case Study

Subjective-C
Dynamic Method Pre-Dispatch 57

UILabel 
@property NSString *text 
@property UIFont *font 
... 
- (void)Portrait_drawTextInRect:(CGRect)rect 
- (void)Landscape_drawTextInRect:(CGRect)rect 
- (void)Default_drawTextInRect:(CGRect)rect 
- (void)drawTextInRect:(CGRect)rect 

‣ no additional cost for method invocations

‣ cost incurred at context switching time

@activate(Landscape);

@deactivate(Landscape);

Default impl

Landscape impl

Portrait impl
vtable

(1.0)

http://developer.apple.com/library/ios/documentation/Cocoa/Reference/Foundation/Classes/NSString_Class/Reference/NSString.html#//apple_ref/doc/c_ref/NSString
http://developer.apple.com/library/ios/documentation/uikit/reference/UIFont_Class/Reference/Reference.html#//apple_ref/doc/c_ref/UIFont

Subjective-C
Structural Reflection in Objective-C 58

Method class_getClassMethod(Class aClass, SEL aSelector)

Method class_getInstanceMethod(Class aClass, SEL aSelector)

IMP method_getImplementation(Method method)

Class Introspection

Method Introspection

Method Intercession
IMP method_setImplementation(Method method, IMP imp)

BOOL class_addMethod(Class cls, SEL name, IMP imp, const char *types)

Class Intercession

Subjective-C

 ...
 NSMethodSignature *signature = defaultMethod->signature;
 NSInvocation *invocation =
 [NSInvocation invocationWithMethodSignature:signature];
 [invocation setTarget:receiver];
 [invocation setSelector:adaptedMethod->selector];
 va_list arguments;
 va_start(arguments, methodSelector);
 int arg = va_arg(arguments, int);
 [invocation setArgument:&arg atIndex: 0];
 ...

Invocation Reification

Behavioural Reflection in Objective-C 59

Invocation Activation
 [invocation invoke];
 ...
 void *result;
 [invocation getReturnValue:result];
 return result;

Programming For Context-Driven Adaptability60

✓Definition of context

✓Reifies the circumstances in which the software executes

✓Frame of reference to define adaptations

✓Behaviour adaptability

✓Language abstractions

✓Modularity of adaptations

✓Context discovery

✓Context management

➡ Consistency management

Summary

Conclusion : Mind The Context ! 61

Richard Gabriel, 2006

We need to use softer, more dynamic
architectures that support adding or
replacing modules after deployment
and architectures where objects can

be repaired in situ, methods
changed / added, internal state

restructured, and object hierarchies
rewired. We also need new types of

languages to describe the architecture
of our systems.

Additional Reading 62

N. CARDOZO, S. GONZALEZ, K. MENS, R. VAN DER STRAETEN, J. VALLEJOS, T. D’HONDT. Semantics for Consistent
Activation in Context-Oriented Systems. Information and Software Technology, 58:71-94, 2015.

N. CARDOZO, K. MENS, S. GONZALEZ, P.-Y. ORBAN, W. DE MEUTER. Features on Demand. International Workshop on
Variability Modelling of Software-Intensive Systems, 2014.

N. CARDOZO, S. GONZALEZ, K. MENS, R. VAN DER STRAETEN, T. D’HONDT. Modeling and Analyzing Self-adaptive
Systems with Context Petri Nets. Symposium on Theoretical Aspects of Software Engineering, 2013.

S. GONZALEZ, K. MENS, M. COLACIOIU, W. CAZZOLA. Context Traits: dynamic behaviour adaptation through run-time
trait recomposition. International conference on Aspect-Oriented Software Development, 2013.

E. BAINOMUGISHA, A. CADIZ, P. COSTANZA, W. DE MEUTER, S. GONZALEZ, K. MENS, J. VALLEJOS, T. VAN CUTSEM.
Language Engineering for Mobile Software. Chapter of the Handbook of Research on Mobile Software Engineering:
Design, Implementation and Emergent Applications, IGI Global, 2012.

N. CARDOZO, S. GUNTHER, K. MENS, T. D’HONDT. Feature-Oriented Programming and Context-Oriented
Programming: Comparing Paradigm Characteristics by Example Implementations. International Conference on Software
Engineering Advances, 2011.

S. GONZALEZ, N. CARDOZO, K. MENS, A. CADIZ, J-C. LIBBRECHT, J. GOFFAUX. Subjective-C: Bringing Context to
Mobile Platform Programming. International Conference on Software Language Engineering, 2010.

J. VALLEJOS, S. GONZALEZ, P. COSTANZA, W. DE MEUTER, T. D’HONDT, K. MENS. Predicated Generic Functions:
Enabling Context-Dependent Method Dispatch. International Conference on Software Composition, 2010.

S. GONZALEZ, K. MENS, A. CADIZ. Context-Oriented Programming with the Ambient Object System. Journal of
Universal Computer Science, 14(20):3307–3332, 2008.

S. GONZALEZ, K. MENS, P. HEYMANS. Highly Dynamic Behaviour Adaptability through Prototypes with Subjective
Multimethods. Symposium on Dynamic Languages, 2007.

https://www.researchgate.net/publication/267634206_Semantics_for_consistent_activation_in_context-oriented_systems
https://www.researchgate.net/publication/267634206_Semantics_for_consistent_activation_in_context-oriented_systems
https://www.researchgate.net/publication/261703622_Features_on_Demand
https://www.researchgate.net/publication/248676238_Modeling_and_Analyzing_Self-Adaptive_Systems_with_Context_Petri_Nets
https://www.researchgate.net/publication/248676238_Modeling_and_Analyzing_Self-Adaptive_Systems_with_Context_Petri_Nets
https://www.researchgate.net/publication/237202189_Context_Traits_Dynamic_Behaviour_Adaptation_through_Run-Time_Trait_Recomposition
https://www.researchgate.net/publication/237202189_Context_Traits_Dynamic_Behaviour_Adaptation_through_Run-Time_Trait_Recomposition
https://www.researchgate.net/publication/249314635_Language_Engineering_for_Mobile_Software
https://www.researchgate.net/publication/229066926_Feature-Oriented_Programming_and_Context-Oriented_Programming_Comparing_Paradigm_Characteristics_by_Example_Implementations
https://www.researchgate.net/publication/229066926_Feature-Oriented_Programming_and_Context-Oriented_Programming_Comparing_Paradigm_Characteristics_by_Example_Implementations
https://www.researchgate.net/publication/229066926_Feature-Oriented_Programming_and_Context-Oriented_Programming_Comparing_Paradigm_Characteristics_by_Example_Implementations
https://www.researchgate.net/publication/221055377_Subjective-C_Bringing_Context_to_Mobile_Platform_Programming
https://www.researchgate.net/publication/221055377_Subjective-C_Bringing_Context_to_Mobile_Platform_Programming
https://www.researchgate.net/publication/220888926_Predicated_generic_functions_enabling_context-dependent_method_dispatch
https://www.researchgate.net/publication/220888926_Predicated_generic_functions_enabling_context-dependent_method_dispatch
https://www.researchgate.net/publication/220349673_Context-Oriented_Programming_with_the_Ambient_Object_System
https://www.researchgate.net/publication/220828947_Highly_dynamic_behaviour_adaptability_through_prototypes_with_subjective_multimethods
https://www.researchgate.net/publication/220828947_Highly_dynamic_behaviour_adaptability_through_prototypes_with_subjective_multimethods

CONTEXT-ORIENTED PROGRAMMING

POSSIBLE QUESTIONS

✦ What is the main difference between traditional software systems and context-aware
systems?

✦ Explain, in your own words, what problems context-oriented programming tries to solve.

✦ Explain, in your own words, what context-oriented programming is.

✦ Two different techniques exist for implementing dynamic adaptation of software behaviour
to context: method dispatch and method pre-dispatch. Briefly explain and compare these
two techniques.

✦ One particular technique for implementing dynamic adaptation of software behaviour to
context is that of method pre-dispatch. Explain that technique in detail and illustrate it with
a concrete example.

X

CLASS… IS… DISMISSED.

https://vimeo.com/35864017

