
SOFTWARE MAINTENANCE 
& EVOLUTION

LINGI2252 – PROF. KIM MENS

 
INTRODUCTION & PRELIMINARIES

LINGI2252 – PROF. KIM MENS

A. COURSE INTRODUCTION

LINGI2252 – PROF. KIM MENS

SOFTWARE MAINTENANCE AND EVOLUTION – INTRODUCTION

COURSE THEMES

Software Maintenance

Software Evolution

Software Reuse

�4

SOFTWARE MAINTENANCE AND EVOLUTION – INTRODUCTION

LEARNING OUTCOMES

Gain familiarity with the concepts of software evolution,
reuse and maintenance.

Gain hands-on experience with techniques to build more
maintainable and reusable software.

Identify the issues and challenges associated with software
evolution and assess their impact.

Discuss (dis)advantages and trade-offs of different types and
techniques for software reuse.

SOFTWARE MAINTENANCE AND EVOLUTION – INTRODUCTION

COURSE CONTENTS

Concepts and definitions

Domain modelling & feature-oriented domain analysis

Software reuse & object-oriented programming

Bad smells and refactoring

Software patterns

Design heuristics

Libraries & application frameworks

An industrial case study

Reflection, aspect-oriented programming and context-oriented programming

�6

SOFTWARE MAINTENANCE AND EVOLUTION – INTRODUCTION

COURSE ORGANISATION

Theory sessions covering the different course topics

Practical sessions to apply the concepts in practice

developing and evolving a maintainable and reusable
software system

Missions to complete the application developed during the
practical sessions

�7

SOFTWARE MAINTENANCE AND EVOLUTION – INTRODUCTION

COURSE EVALUATION

[10%] Obligatory participation during practical sessions

reviewing work of other groups

[40%] intermediate missions in-between practical sessions

presentation and demo of deliverables produced

2 missions (10% + 20%) throughout semester

demo of 3rd mission (10%) at end of semester

[50%] during exam session

[25%] written exam

[25%] presentation and discussion

on 3rd mission + overall lessons learned throughout course

�8

25%

25%
10%

20%

10%
10%

Participation
Mission 1
Mission 2
Demo Mission 3
Defence Mission 3
Written exam

B. SOFTWARE MAINTENANCE

LINGI2252 – PROF. KIM MENS

PRELIMINARIES – SOFTWARE MAINTENANCE

WHY SOFTWARE FAILS

Billions of $ per year wasted
on preventable mistakes

Biggest tragedy : software
failure is mostly predictable
and avoidable.

Organisations don't see
preventing failure as important

even though this can harm
or destroy the organisation

http://spectrum.ieee.org/computing/software/why-software-fails

�10

http://spectrum.ieee.org/computing/software/why-software-fails

PRELIMINARIES – SOFTWARE MAINTENANCE �11

PRELIMINARIES – SOFTWARE MAINTENANCE �12

PRELIMINARIES – SOFTWARE MAINTENANCE

THE IMPORTANCE OF MAINTENANCE

Rates of software
engineering failure

Requirements Very High

Specification Low

Design Low

Implementation Low

Installation High

Operation Enormous

Maintenance Very High

REPORTS AND ART/CLES

TABLE I. Estimations of Percentage of Total Costs Represented by
Maintenance Costs

Maintenance Cost Study
(percentage) Estimation

40 [17 and 18]
40-60 [6, 7, 8, 10, 11, 16, 19, 26]

67 [28]
70 [6l
75 [1, 12]

* The great variance in the estimates of maintenance cost percentage is due
partially to the type of software being studied (business. military), sampling
error, and measurement problems.

MOTIVATION FOR RESEARCH AND METHODOLOGY
Important questions in the area of application program main-
tenance remain unanswered. Two major objectives of this
study are to address several of these unanswered questions
and to corroborate (or not) findings by previous studies on
application program maintenance. For that purpose, the fol-
lowing steps have been followed:

1. A list of potential determinants of application program
maintenance expenditures was identified by an extensive sur-
vey of the literature. This list was modified to reflect the
personal opinion of several academics and practitioners
known for their knowledge in the area. An adaptation of the
Delphi technique was used to integrate and converge the
experts' opinions.

2. A pilot study, involving four organizations, was used to
refine the variables (Table I] shows the final set of variables
considered) and to identify any operational problems. As a
result, the use of mailed questionnaires was dropped in spite
of convenience and ability to reach a large number of organi-
zations quickly: The pilot study clearly indicated the necessity
of using personal interviews because of the great variance in
electronic data processing (EDP) terminology.

3. A general survey encompassed two major research pro-
cedures to: 1) determine management of application programs
(Data collection was done through personal interviews with
the MIS managers and immediate subordinates within each
organization. Originally, 69 organizations were approached;
but for a variety of reasons, 26 did not participate in the
study), and 2) to analyze for a more detailed, company-spe-
cific program of maintenance (Data collection was accom-
plished through the inspection of application programs, avail-
able program documentation and through personal interviews
with program developers, users, and maintenance personnel).

Due to the amount of time necessary to research each com-
pany, the number of case studies was limited to five. Within
each organization a minimum random sample of 30 applica-
tion programs was selected.

The organizations participating in the study were selected
on a convenience basis and had to satisfy the following
characteristics:

1. An MIS department of any budget size utilizing a service
bureau for no more than 50% of the company's MIS-related
activities.

2. Not a service bureau or consulting organization provid-
ing services in the MIS area.

3. Not an educational institution.

4. A central processing unit classified as at least a mini-
computer. Organizations using only microcomputers and/or
other automatic data processing equipment without at least
one minicomputer were excluded.

5. Computer equipment operational for at least three years.
(All organizations in the sample had computer equipment
operational for at least six years.)

A detailed discussion of the variables studied and of the
research methodology is documented by Guimaraes [15].

COMPANY SAMPLE DEMOGRAPHICS
The following dimensions characterize the companies sur-
veyed.

Sample Description Through Selected Company Attributes
A list of important descriptors is shown in Table IN which
contains (1) the arithmetic mean, (2) the median, (3) standard
deviation, and (4) range for 10 company attributes. For the last
three attributes, which are categorical, the percentage of com-
panies in the sample presently using the items and the per-
centage of companies planning to use the items in the very
near future, i.e., within one year, replace the sample median
and standard deviation.

Sample Distribution by Industry Classification
As recognized by McLaughlin [21], companies in different
industries differ in their EDP operations. For this study, orga-
nizations were classified according to their Standard Industrial
Classification (SIC) code. All classifications except Food Proc-
essing, are general industrial classifications. Due to its pre-
dominance in the Twin Cities area, Food Processing has been
separated out from Manufacturing.

TABLE II. List of Variables Studied

Company attributes: Industry-type and company sales or revenue

MIS Department Attributes:

Program General Attributes:

Program Physical Attributes:

Program User(s) Attributes:

Department budget, system development budget, maintenance budget, use of project team separate maintenance group, other
related department subunits, specific program development standards, number of program development standards, documents
used for maintenance, self-contained query language use, system development charge-back, system maintenance charge-
back, languages available at the installation, language transitions at the installation, total number of application programs,
hardware/operating system conversions, other technical changes, DBMS utilization, MIS manager estimation of average
program life length, application package expenditures, environment sophistication, environment transition.

DSS versus EDP user process, DMBS or shared files or self-contained files, user or staff written, batch or online, new system
or redevelopment, time spent on documentation, type of documents, maintenance personnel estimate of documentation
effectiveness, life length.

Number of lines of code, development cost, development time, maintenance average yearly cost, source language used.

Number of users served, number of organization functions served, number of business functions served, rank.

740 Communications of the ACM October 1983 Volume 26 Number 10

Source: Guimaraes, T. 1983. Managing application program maintenance
expenditures. Commun. ACM 26, 10 (Oct. 1983), 739-746

40 - 75%

�13

PRELIMINARIES – SOFTWARE MAINTENANCE

SOFTWARE MAINTENANCE IS HARD

Even after deployment, software systems may need to undergo
changes, for example to fix problems or improve the system.

This activity is called “software maintenance”.

Software maintenance is a crucial, but critical, activity in the life
cycle of a system.

It’s often harder to maintain a system than to develop it.

But it’s even harder to design a maintainable system, because
it’s hard to foresee all future changes.

�14

PRELIMINARIES – SOFTWARE MAINTENANCE

DEFINITION OF SOFTWARE MAINTENANCE

According to [IEEE Std 610.12-1990]

“Software maintenance is the process of modifying a
software system or component after delivery to …

(Software) maintainability is the ease with which a
software system or component can be modified to …

… correct faults, improve performance or other attributes,
or adapt to a changed environment.”

�15

http://www.mit.jyu.fi/ope/kurssit/TIES462/Materiaalit/IEEE_SoftwareEngGlossary.pdf

PRELIMINARIES – SOFTWARE MAINTENANCE

TYPES OF SOFTWARE MAINTENANCE

Different types of maintenance can be distinguished,
depending on the goal of the maintenance activity:

Adaptive maintenance

Corrective maintenance

Perfective maintenance

Preventive maintenance

Definitions provided by the [IEEE Std 610.12-1990] standard

�16

http://www.mit.jyu.fi/ope/kurssit/TIES462/Materiaalit/IEEE_SoftwareEngGlossary.pdf

PRELIMINARIES – SOFTWARE MAINTENANCE

ADAPTIVE MAINTENANCE

Adapting to changes in the environment (either hardware and software)

According to [IEEE Std 610.12-1990], adaptive maintenance is

“Software maintenance performed to make a computer program usable in a changed
environment.”

Occurs when, as a result of external influences or strategic changes, a software system
needs to be adapted to remain up to date.

Examples:

The government decides to change the VAT rate from 21% to 19%.

An insurance company decides to offer a new kind of insurance.

A company decides to introduce an online system to allow clients to access its services.
This online system needs to be integrated into their normal ordering system.

�17

http://www.mit.jyu.fi/ope/kurssit/TIES462/Materiaalit/IEEE_SoftwareEngGlossary.pdf
http://www.teach-ict.com/as_a2_ict_new/ocr/A2_G063/335_implementing_systems/maintenance/miniweb/pg3.htm

PRELIMINARIES – SOFTWARE MAINTENANCE

CORRECTIVE MAINTENANCE

Correcting errors that cause the software to behave in undesired or unexpected ways.

According to [IEEE Std 610.12-1990], corrective maintenance is

“Software maintenance performed to correct faults in hardware or software.”

Often occurs after deployment when customers detect problems that were not discovered
during initial testing of the system. These errors should be fixed.

�18

http://www.mit.jyu.fi/ope/kurssit/TIES462/Materiaalit/IEEE_SoftwareEngGlossary.pdf

PRELIMINARIES – SOFTWARE MAINTENANCE

PERFECTIVE MAINTENANCE

Improving the quality of a software system.

According to [IEEE Std 610.12-1990], perfective maintenance is

“Software maintenance performed to improve the performance, maintainability or
other attributes of a computer program.”

Occurs after the system has been in place and running fine for a while, and end users start
asking for minor tweaks improvements that could improve the way the system works.

Examples :

Better input forms, shortcut commands, better help system or error reporting, making
the system more responsive, …

�19

http://www.mit.jyu.fi/ope/kurssit/TIES462/Materiaalit/IEEE_SoftwareEngGlossary.pdf
http://www.teach-ict.com/as_a2_ict_new/ocr/A2_G063/335_implementing_systems/maintenance/miniweb/pg4.htm

PRELIMINARIES – SOFTWARE MAINTENANCE

PREVENTIVE MAINTENANCE

Proactively change the software to avoid future problems

According to [IEEE Std 610.12-1990], preventive maintenance is

“Software maintenance performed for the purpose of preventing problems before
they occur.”

�20

http://www.mit.jyu.fi/ope/kurssit/TIES462/Materiaalit/IEEE_SoftwareEngGlossary.pdf

PRELIMINARIES – SOFTWARE MAINTENANCE

TYPES OF SOFTWARE MAINTENANCE

WHY? 

WHEN?

Correction Enhancement

Proactive Preventive Perfective

Reactive Corrective Adaptive

�21

PRELIMINARIES – SOFTWARE MAINTENANCE

A STUDY OF SOFTWARE MAINTENANCE IN INDUSTRY

Between 1977 and 1980, Lientz & Swanson carried out a
large study of the maintenance of application software in
487 companies

They found that, on average, development and systems staff
spent half of their time on maintenance.

The larger the company, the more time was spent on
maintenance.

Source: Lientz & Swanson, 1980

�22

http://swreflections.blogspot.be/2011/04/lientz-and-swanson-on-software.html

PRELIMINARIES – SOFTWARE MAINTENANCE

MAINTENANCE EFFORT

Corrective Maintenance : 21,7%

Emergency fixes: 12,4%

Routine debugging: 9,3%

Adaptive Maintenance : 23,6%

Accommodating changes to data inputs and files: 17,4%

Accommodating changes to hardware and software: 6,2%

Perfective Maintenance : 51,3%

Customer enhancements: 41.8%

Improvements to documentation: 5.5%

Other (Preventive Maintenance) : 3,4%

3%

51% 24%

22%

Corrective
Adaptive
Perfective
Other

According to the study,
maintenance effort, was
broken out as follows:

�23

PRELIMINARIES – SOFTWARE MAINTENANCE

MAINTENANCE REASONS
Changed user requirements

user-requested extensions and modifications

Bug fixes

scheduled routine fixes

emergency fixes (more costly due to heavy
pressure)

Changed data formats

Y2K, Euro, tax rates, postal codes, phone numbers,
...

new standards: UML, XML, COM, DCOM, CORBA,
ActiveX, WAP

Hardware changes

Efficiency improvements

�24

PRELIMINARIES – SOFTWARE MAINTENANCE

MAIN CAUSES OF MAINTENANCE PROBLEMS

Poor quality of the software documentation

Poor software quality (e.g., unstructured code, too large
components, inadequate design)

Insufficient knowledge about the system and its domain

(maybe unavailable due to personnel turnover)

Ineffectiveness of maintenance team

low productivity, low motivation, low skill levels, competing
demands for programmer time

�25

PRELIMINARIES – SOFTWARE MAINTENANCE

KEY TO MAINTENANCE IS IN DEVELOPMENT

Higher code quality 
 ⇒ less (corrective) maintenance

Anticipating changes 
 ⇒ less (adaptive and perfective) maintenance

Better tuning to user needs  
 ⇒ less (perfective) maintenance

Less code 
 ⇒ less maintenance

�26

C. SOFTWARE EVOLUTION

LINGI2252 – PROF. KIM MENS

PRELIMINARIES – SOFTWARE EVOLUTION

SOFTWARE AGEING

“Programs, like people, get old. We can’t prevent ageing, but we can
understand its causes, take steps to limit its effects, temporarily reverse
some of the damage it has caused, and prepare for the day when the
software is no longer viable.”

“A sign that the software engineering profession has matured will be
that we lose our preoccupation with the first release and focus on the
long-term health of our products. Researchers and practitioners must
change their perception of the problems of software development.
Only then will software engineering deserve to be called ‘engineering’.”

Source: Parnas, 1994 [http://ieeexplore.ieee.org/document/296790/]

�28

http://ieeexplore.ieee.org/document/296790/

PRELIMINARIES – SOFTWARE EVOLUTION

REASONS WHY SOFTWARE AGES

maintenance activities

ignorant surgery and architectural erosion

inflexibility from the start

insufficient or inconsistent documentation

deadline pressure

duplicated functionality (code duplication)

lack of modularity

�29

PLUS ÇA CHANGE, 
PLUS C'EST LA MÊME CHOSE.

Jean-Baptiste Alphonse Karr

�30

PRELIMINARIES – SOFTWARE EVOLUTION

CHANGE IS INEVITABLE

New requirements emerge when software is being used

Even as it is being developed !

Business environments change

Feedback loop : the changed software may even be the reason why the
environment changes !

Errors must be repaired

New computers and equipment are added to the system

The performance or reliability of the system may have to be improved

New technology (new standards, new OS, new software versions, ...)

�31

PRELIMINARIES – SOFTWARE EVOLUTION

CHANGE INDUCES TECHNICAL DEBT

As a change is started on a software system, often there is a
need to make other coordinated changes at the same time in
other parts of the software.

These other required changes, if not completed immediately,
incur a kind of debt that must be paid at some point in the
future.

This technical debt is “the extra development work that
arises when code that is easy to implement in the short run is
used instead of applying the best overall solution”.

�32

https://en.wikipedia.org/wiki/Technical_debt

PRELIMINARIES – SOFTWARE EVOLUTION

CHANGE INDUCES TECHNICAL DEBT

In other words, technical debt is an accumulation of poor
and lazy implementation choices that slowly makes the code
hard to maintain or evolve.

Just like financial debt, if technical debt is not repaid, the
uncompleted changes accumulate interest on top of interest,
because of increased entropy.

The longer you wait to make the changes, the harder it
becomes.

�33

PRELIMINARIES – SOFTWARE EVOLUTION

CHANGE IS HARD TO ANTICIPATE

Many changes cannot be anticipated at design time

“The fundamental problem, supported by 40 years of hard experience,
is that many changes actually required are those that the original
designers cannot even conceive of.” [Bennett & Rajlich 2000]

The Heisenberg principle of software development

requirements start changing from the moment you start building or
using a software system

Key challenge for organisations

implementing and managing change to their existing software systems

�34

http://www0.cs.ucl.ac.uk/staff/A.Finkelstein/fose/finalbennett.pdf

PRELIMINARIES – SOFTWARE EVOLUTION

MAINTENANCE VS. EVOLUTION

Software maintenance typically does not involve major changes
to the system’s architecture

Changes are implemented by modifying existing components
and adding new components to the system

Software evolution is a broader term that encompasses both
software maintenance and bigger changes

At different phases of the software life-cycle

Evolution is intrinsic to the very nature of software development

�35

PRELIMINARIES – SOFTWARE EVOLUTION

SOFTWARE EVOLUTION

Evolution may arise

during software development

where the design evolves and matures as the understanding of the problem
to be solved and how to solve it gradually increases

during software maintenance

after deployment, in the continuing process of adapting the system to the
changing needs of its users and usage environment

when the system’s continuous evolution made it too complex to maintain

the system may requiring a more extensive restructuring, redesign or even a
full reimplementation or replacement

�36

PRELIMINARIES – SOFTWARE EVOLUTION

DEFINITION OF SOFTWARE EVOLUTION

Software evolution is …

… all programming activity that is intended to generate a
new software version from an earlier operational version  
[Lehman & Ramil 2000]

�37

PRELIMINARIES – SOFTWARE EVOLUTION

EVOLUTION MECHANISMS

Different types of evolution can be distinguished according to the mechanism how evolution is
achieved

Manual : changes applied manually by a software developer

Generic : write sufficiently generic and abstract components that are broadly adaptable

Generation : generate lower-level representation from a higher-level specification of the software

a.k.a. vertical transformation or refinement: from more abstract to more concrete

Transformation : old components are transformed into a newer version

a.k.a. horizontal transformation or restructuring: transformation at the same level of abstraction

Configuration : different variants of a software component are available up front but the actual
selection of which one to use is based on a desired configuration

e.g. software product lines, software-as-a-service, context-oriented programming, …

�38

PRELIMINARIES – SOFTWARE EVOLUTION

STATIC VS. DYNAMIC SOFTWARE EVOLUTION

Static evolution

changes are applied manually by a human programmer

part of the software gets adapted or replaced by a programmer and the evolved
software is redeployed

Dynamic evolution

changes are applied automatically at runtime

to better suit the current needs of the software system

by automatically generating, adapting, transforming or selecting parts of the
software

e.g., self-adaptive systems, metaprogramming, context-oriented programming, …

�39

PRELIMINARIES – SOFTWARE EVOLUTION

PROGRAMMING PARADIGMS …

Many programming paradigms offer dedicated mechanisms to support software
evolution and reuse at the language level

Object-oriented programming offers abstractions like inheritance to enable code reuse
and extensibility

Event-driven programming allows a program to trigger certain actions in response to
dynamically occurring events such as user inputs or actions

Service-oriented programming was originally proposed as a new paradigm to
promote software reuse by having services with a well-defined interface as the main unit
of modularisation

Component-based development is a reuse-based approach to defining, implementing
and composing loosely coupled independent components into software systems

�40

https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Service-oriented_programming
https://en.wikipedia.org/wiki/Component-based_software_engineering

PRELIMINARIES – SOFTWARE EVOLUTION

… PROGRAMMING PARADIGMS

Aspect-oriented programming allows to implement "cross-cutting" concerns, not central
to the business logic, separately from the base functionality, and then "weave" these
back into the code

Metaprogramming is the writing of computer programs that treat other programs as
their data, thus allowing them to read, generate, analyse or transform other programs, or
even modify themselves while running. More specifically, reflection is the ability of a
computer program to examine, introspect, and modify its own structure and behaviour
at runtime.

Context-oriented programming models context as a first class language citizen and
enables programs to adapt their behaviour dynamically to changing contexts.

… (and many more)

�41

https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://en.wikipedia.org/wiki/Metaprogramming
https://en.wikipedia.org/wiki/Reflection_(computer_programming)
http://www.sciencedirect.com/science/article/pii/S016412121200074X

PRELIMINARIES – SOFTWARE EVOLUTION

THE LAWS OF SOFTWARE EVOLUTION

After major empirical studies, from 1974 onwards, Lehman and Belady
proposed a number of “laws” that apply to many evolving software systems.

The laws describe a balance between forces that drive new development and
forces that slow down progress.

influenced by thermodynamics

reflect established observations and empirical evidence

Over the past decades the laws have been revised and extended several times:

M. M. Lehman, L. Belady. Program Evolution: Processes of Software Change.
Academic Press, London, 1985, 538pp.

�42

https://en.wikipedia.org/wiki/Lehman%27s_laws_of_software_evolution
http://dl.acm.org/citation.cfm?id=7261

PRELIMINARIES – SOFTWARE EVOLUTION

THE LAWS OF SOFTWARE EVOLUTION

There is no such thing as a “finished” computer program.

Lehman and Belady were the first to recognise the phenomenon
of software evolution.

Their laws of software evolution are based on a study of the
evolution of IBM 360 mainframe OS and led, over a period of 20
years, to the formulation of eight Laws of Software Evolution.

M. M. Lehman. Laws of Software Evolution Revisited. Lecture
Notes in Computer Science 1149, pp. 108-124, Springer Verlag,
1997

�43

https://www.rose-hulman.edu/Users/faculty/young/CS-Classes/csse490/cs490-const-and-evol/LawsOfSoftwareEvolutionRevisited.pdf

PRELIMINARIES – SOFTWARE EVOLUTION

THE EIGHT LAWS OF SOFTWARE EVOLUTION

Law 1: Continuing change

Law 2: Increasing complexity

Law 3: Self regulation

Law 4: Conservation of organisational stability

Law 5: Conservation of familiarity

Law 6: Continuing growth

Law 7: Declining quality

Law 8: Feedback system

�44

PRELIMINARIES – SOFTWARE EVOLUTION

LAW 1 : CONTINUING CHANGE

Law 1: Continuing change

A program that is used in a real-world environment must be
continually adapted, or else become progressively less satisfactory.

Reasons:

Evolution of the environment (“operational domain”)

Hence, increasing mismatch between the system and its environment

Continuous need for change because requirements and environment
continuously evolving

�45

PRELIMINARIES – SOFTWARE EVOLUTION

LAW 2 : INCREASING COMPLEXITY

Law 2: Increasing complexity

As a program is evolved its complexity increases with time unless specific work
is done to maintain or reduce it.

Reasons:

Inspired by the second law of entropy in thermodynamics.

Unaddressed technical debt increases entropy.

Small changes are applied in a step-wise process; each ‘patch’ makes sense
locally, not globally

Effort needed to address accumulated technical debt; a more significant
restructuring or refactoring may be needed

�46

PRELIMINARIES – SOFTWARE EVOLUTION

LAW 6 : CONTINUING GROWTH

Law 6: Continuing Growth

Functional content of a program must be continually increased to
maintain user satisfaction over its lifetime.

Related to the first law, but with focus on functional requirements

often one cannot afford to omit existing functionality

“omitted attributes will become the bottlenecks and irritants in
usage as the user has to replace automated operation with
human intervention. Hence they also lead to demand for change”

�47

PRELIMINARIES – SOFTWARE EVOLUTION

LAW 7 : DECLINING QUALITY

Law 7: Declining Quality

"Evolving programs will be perceived as of declining
quality unless rigorously maintained and adapted to a
changing operational environment."

Related the first law, but with focus on observed reliability

�48

PRELIMINARIES – SOFTWARE EVOLUTION

APPLICABILITY OF THE LAWS

These laws of software evolution seem to be generally applicable to large,
tailored systems developed by large organisations.

Confirmed in later work by Lehman on the FEAST project

No proof yet whether they are applicable to other types of software as well

Systems that incorporate a significant number of “off the shelf”
components

Small organisations

Medium sized systems

Open source software

�49

SOFTWARE MAINTENANCE AND EVOLUTION – QUESTIONS

POSSIBLE QUESTIONS

1. Define and explain, in your own words, the difference between software maintenance and
software evolution.

2. List and explain the different types of software maintenance. Given an illustrative example of
at least three different types of particular maintenance activities.

1. adaptive, corrective, perfective, preventive

2. proactive or reactive, correction or enhancement

3. Discuss the need for and possible reasons for software maintenance, change and evolution.

4. Give some main causes of maintenance problems.

5. Define and explain, in your own words, what technical debt is.

6. What different types of software evolution can be distinguished?

7. Pick one of the laws (1, 2, 6 or 7) of software evolution and explain it.

�51

