

Pasg, ‘
Ronsia {06
5 Ns B

SOFTWARE MAINTENANCE AND EVOLUTION - INTRODUCTION

COURSE THEMES

Software Maintenance
Software Evolution

Software Reuse

SOFTWARE MAINTENANCE AND EVOLUTION - INTRODUCTION

LEARNING OUTCOMES

Gain familiarity with the concepts of software evolution,
reuse and maintenance.

Gain hands-on experience with techniques to build more
maintainable and reusable software.

Identify the issues and challenges associated with software
evolution and assess their impact.

Discuss (dis)advantages and trade-offs of different types and
techniques for software reuse.

SOFTWARE MAINTENANCE AND EVOLUTION - INTRODUCTION

COURSE CONTENTS

Concepts and definitions

Domain modelling & feature-oriented domain analysis
Software reuse & object-oriented programming

Bad smells and refactoring

Software patterns

Design heuristics

Libraries & application frameworks

An industrial case study

Reflection, aspect-oriented programming and context-oriented programming

SOFTWARE MAINTENANCE AND EVOLUTION - INTRODUCTION

COURSE ORGANISATION

Theory sessions covering the different course topics
Practical sessions to apply the concepts in practice

developing and evolving a maintainable and reusable
software system

Missions to complete the application developed during the
practical sessions

SOFTWARE MAINTENANCE AND EVOLUTION - INTRODUCTION

COURSE EVALUATION

[10%] Obligatory participation during practical sessions
reviewing work of other groups

[40%] intermediate missions in-between practical sessions
presentation and demo of deliverables produced
2 missions (10% + 20%) throughout semester
demo of 3rd mission (10%) at end of semester

[50%] during exam session
[25%] written exam

[25%] presentation and discussion

on 3rd mission + overall lessons learned throughout course

Participation
Mission 1

Mission 2

Demo Mission 3
Defence Mission 3
Written exam

237,

PRELIMINARIES — SOFTWARE MAINTENANCE

10

WHY SOFTWARE FAILS

Billions of $ per year wasted 0

on preventable mistakes

2002

Biggest tragedy : software =

failure is mostly predictable

and avoidable. o

Organisations don't see

preventing failure as important [

even though this can harm

1993

or destroy the organisation

1993

1992

Hudson Bay Co. [Canada]

UK Inland Revenue

Avis Europe PLC [UK]

Ford Motor Co.

J Sainsbury PLC [UK]
Hewlett-Packard Co.

AT&ET Wireless

McDonald’s Corp.

Sydney Water Corp. [Australia)
CIGNA Corp.

Nike Inc.

Kmart Corp.

Washington, D.C.

United Way

State of Mississippi

Hershey Foods Corp.
Snap-on Inc.

U.S. Internal Revenue Service
State of Washington

Oxford Health Plans Inc.

Arianespace [France]

FoxMeyer Drug Co.

Toronto Stock Exchange [Canada)

U.S. Federal Aviation Administration

State of California

Chemical Bank

London Stock Exchange [UK]
Allstate Insurance Co.

London Ambulance Service [UK]

Greyhound Lines Inc.

Budget Rent-A-Car, Hilton Hotels, Marriott
International, and AMR [American Airlines)

Problems with inventory system contribute to $33.3 million® loss.
Software errors contribute to $3.45 billion* tax-credit overpayment.
Enterprise resource planning (ERP) system canceled after $54.5 million is spent.

Purchasing system abandoned after deployment costing approximately $400 million.

Supply-chain management system abandoned after deployment costing $527 million."

Problems with ERP system contribute to SI60 million loss.

Customer relations management (CRM) upgrade problems lead to revenue loss of $I00 million.
The Innovate information-purchasing system canceled after $170 million is spent.
Billing system canceled after $33.2 million is spent.

Problems with CRM system contribute to $445 million loss.,

Problems with supply-chain management system contribute to SI00 million loss.
Supply-chain management system canceled after S130 million is spent.

City payroll system abandoned after deployment costing $25 million.

Administrative processing system canceled after $12 million is spent.

Tax system canceled after $11.2 million is spent; state receives SI85 million damages.
Problems with ERP system contribute to $I51 million loss.

Problems with order-entry system contribute to revenue loss of S50 million.

Tax modernization effort canceled after $4 billion is spent.

Department of Motor Vehicle (DMV) system canceled after $40 million is spent.

Billing and claims system problems contribute to quarterly loss; stock plummets,
leading to $3.4 billion loss in corporate value.

Software specification and design errors cause $350 million Ariane 5 rocket to explode.

$40 million ERP system abandoned after deployment, forcing company into bankruptcy.
Electronic trading system canceled after $25.5 million** is spent.

Advanced Automation System canceled after $2.6 billion is spent.

DMV system canceled after $44 million is spent.

Software error causes a total of SIS million to be deducted from 100 000 customer accounts,
Taurus stock settlement system canceled after S600 million** is spent.

Office automation system abandoned after deployment, costing S130 million.

Dispatch system canceled in 1990 at $11.25 million**; second attempt abandoned after
deployment, costing $15 million.**

Bus reservation system crashes repeatedly upon introduction, contributing to
revenue loss of $61 million.

Travel reservation system canceled after $185 million is spent.

http://spectrum.ieee.org/computing/software/why-software-fails

http://spectrum.ieee.org/computing/software/why-software-fails

2005
2004-05
2004
2004
2004
2004
2005-04
2002
2002
2002
2001
2001
2000
1999
1999
1999
1998
1997
1997
1997

Hudson Bay Co. [Canada]

UK Inland Revenue

Avis Europe PLC [UK]

Ford Motor Co.

J Sainsbury PLC [UK]
Hewlett-Packard Co.

ATET Wireless

McDonald’s Corp.

Sydney Water Corp. [Australia)
CIGNA Corp.

Nike Inc.

Kmart Corp.

Washington, D.C.

United Way

State of Mississippi

Hershey Foods Corp.
Snap-on Inc.

U.S. Internal Revenue Service
State of Washington

Oxford Health Plans Inc.

Problems with inventory system contribute to $33.3 million* loss.

Software errors contribute to $3.45 billion* tax-credit overpayment.

Enterprise resource planning (ERP) system canceled after $54.5 million' is spent.
Purchasing system abandoned after deployment costing approximately S400 million.
Supply-chain management system abandoned after deployment costing $527 million."
Problems with ERP system contribute to SI60 million loss.

Customer relations management (CRM) upgrade problems lead to revenue loss of SI00 million.
The Innovate information-purchasing system canceled after $170 million is spent.
Billing system canceled after $33.2 million' is spent.

Problems with CRM system contribute to $S445 million loss.,

Problems with supply-chain management system contribute to SI00 million loss.
Supply-chain management system canceled after S130 million is spent.

City payroll system abandoned after deployment costing $25 million.

Administrative processing system canceled after $12 million is spent.

Tax system canceled after S11.2 million is spent; state receives SI185 million damages.
Problems with ERP system contribute to SI5I million loss.

Problems with order-entry system contribute to revenue loss of S50 million.

Tax modernization effort canceled after $4 billion is spent.

Department of Motor Vehicle (DMV) system canceled after $40 million is spent.

Billing and claims system problems contribute to quarterly loss; stock plummets,
leading to $3.4 billion loss in corporate value.

2005
200405
2004
2004
2004
2004
2005-04
2002

Hudson Bay Co. [Canada] Problems with inventory system contribute to $33.3 million* loss.

UK Inland Revenue Software errors contribute to $3.45 billion* tax-credit overpayment.

Avis Europe PLC [UK] Enterprise resource planning (ERP) system canceled after $54.5 million” is spent.

Ford Motor Co. Purchasing system abandoned after deployment costing approximately S400 million.

J Sainsbury PLC [UK] Supply-chain management system abandoned after deployment costing $527 million."
Hewlett-Packard Co. Problems with ERP system contribute to SI60 million loss.

ATET Wireless Customer relations management (CRM) upgrade problems lead to revenue loss of SI00 million.
McDonald’s Corp. The Innovate information-purchasing system canceled after $170 million is spent.

2002
2002
2001
2001
2000
1999
1999
1999
1998
1997
1997
1997

The national economié impacts of software defects are
significant. In the USA the cost of software defects has

been estimated to be $59 billion, that is 0.6% of the gross |
domestic product.
Source: National Institute of Standards & Technology
(NIST): The Economic Impacts of Inadequate e
Infrastructure for Software Testing
www.nist.gov/director/prog-ofc/report02-3.pdf
State of Washington Department of Motor Vehicle (DMV) system canceled after $40 million is spent.
Oxford Health Plans Inc. Billing and claims system problems contribute to quarterly loss; stock plummets,

leading to $3.4 billion loss in corporate value.

RateS Of SOftwa re TABLE |. Estimations of Percentage of Total Costs Represented by

Maintenance Costs

en g iIneerin g fa | I ure Maintenance Cost Study
(percentage) Estimation
. . 40 [17 and 18]
Requirements Very High 40-60 [6.7.8, 10, 11, 16, 19, 26]
67 (28]
Specitication Low L [1E61l2]
Des| gn low Source: Guimaraes, T. 1983. Managing application program maintenance
expenditures. Commun. ACM 26, 10 (Oct. 1983), 739-746
Implementation Low
Installation High Standard Software: 25 bugs per 1000 lines of program.
Good Software: 2 errors per 1000 lines.
Operation Fnormous Space Shuttle Software: <1 errors per 10000 lines.
Maintenance Ve ry H ig h Example Handy (Cellular Phone):
200 000 lines of program: up to 600 errors.

Windows-95: 10 Mill. lines: up to 200 000 errors. See also

PRELIMINARIES — SOFTWARE MAINTENANCE 14

SOFTWARE MAINTENANCE IS HARD

Even after deployment, software systems may need to undergo
changes, for example to fix problems or improve the system.

This activity is called “software maintenance”.

Software maintenance is a crucial, but critical, activity in the life
cycle of a system.

It's often harder to maintain a system than to develop it.

But it's even harder to design a maintainable system, because
it's hard to foresee all future changes.

PRELIMINARIES — SOFTWARE MAINTENANCE

DEFINITION OF SOFTWARE MAINTENANCE

According to [IEEE Std 610.12-1990]

“Software maintenance is the process of modifying a
software system or component after delivery to ...

(Software) maintainability is the ease with which a
software system or component can be modified to ...

... correct faults, improve performance or other attributes,
or adapt to a changed environment.”

http://www.mit.jyu.fi/ope/kurssit/TIES462/Materiaalit/IEEE_SoftwareEngGlossary.pdf

PRELIMINARIES — SOFTWARE MAINTENANCE 16

TYPES OF SOFTWARE MAINTENANCE

Different types of maintenance can be distinguished,
depending on the goal of the maintenance activity:

Adaptive maintenance
Corrective maintenance
Perfective maintenance

Preventive maintenance

Definitions provided by the [IEEE Std 610.12-1990] standard

http://www.mit.jyu.fi/ope/kurssit/TIES462/Materiaalit/IEEE_SoftwareEngGlossary.pdf

PRELIMINARIES — SOFTWARE MAINTENANCE 17

ADAPTIVE MAINTENANCE

Adapting to changes in the environment (either hardware and software)

According to [IEEE Std 610.12-1990], adaptive maintenance is

“Software maintenance performed to make a computer program usable in a changed
environment.”

Occurs when, as a result of external influences or strategic changes, a software system
needs to be adapted to remain up to date.

Examples:
The government decides to change the VAT rate from 21% to 19%.

An insurance company decides to offer a new kind of insurance.

A company decides to introduce an online system to allow clients to access its services.
This online system needs to be integrated into their normal ordering system.

http://www.mit.jyu.fi/ope/kurssit/TIES462/Materiaalit/IEEE_SoftwareEngGlossary.pdf
http://www.teach-ict.com/as_a2_ict_new/ocr/A2_G063/335_implementing_systems/maintenance/miniweb/pg3.htm

PRELIMINARIES — SOFTWARE MAINTENANCE 18

CORRECTIVE MAINTENANCE

Correcting errors that cause the software to behave in undesired or unexpected ways.
According to [IEEE Std 610.12-1990], corrective maintenance is
“Software maintenance performed to correct faults in hardware or software.”

Often occurs after deployment when customers detect problems that were not discovered
during initial testing of the system. These errors should be fixed.

http://www.mit.jyu.fi/ope/kurssit/TIES462/Materiaalit/IEEE_SoftwareEngGlossary.pdf

PRELIMINARIES — SOFTWARE MAINTENANCE 19

PERFECTIVE MAINTENANCE

Improving the quality of a software system.
According to [IEEE Std 610.12-1990], perfective maintenance is

“Software maintenance performed to improve the performance, maintainability or
other attributes of a computer program.”

Occurs after the system has been in place and running fine for a while, and end users start
asking for minor tweaks improvements that could improve the way the system works.

Examples :

Better input forms, shortcut commands, better help system or error reporting, making
the system more responsive, ...

http://www.mit.jyu.fi/ope/kurssit/TIES462/Materiaalit/IEEE_SoftwareEngGlossary.pdf
http://www.teach-ict.com/as_a2_ict_new/ocr/A2_G063/335_implementing_systems/maintenance/miniweb/pg4.htm

PRELIMINARIES — SOFTWARE MAINTENANCE

20

PREVENTIVE MAINTENANCE

Proactively change the software to avoid future problems
According to [IEEE Std 610.12-1990], preventive maintenance is

“Software maintenance performed for the purpose of preventing problems before
they occur.”

http://www.mit.jyu.fi/ope/kurssit/TIES462/Materiaalit/IEEE_SoftwareEngGlossary.pdf

PRELIMINARIES — SOFTWARE MAINTENANCE

21

TYPES OF SOFTWARE MAINTENANCE

Correction

Preventive

Corrective

Enhancement

Perfective

Adaptive

PRELIMINARIES — SOFTWARE MAINTENANCE 22

A STUDY OF SOFTWARE MAINTENANCE IN INDUSTRY

Between 1977 and 1980, Lientz & Swanson carried out a
large study of the maintenance of application software in
487/ companies

They found that, on average, development and systems staff
spent half of their time on maintenance.

The larger the company, the more time was spent on
maintenance.

Source: Lientz & Swanson, 1980

http://swreflections.blogspot.be/2011/04/lientz-and-swanson-on-software.html

PRELIMINARIES — SOFTWARE MAINTENANCE

23

MAINTENANCE EFFORT

Corrective Maintenance : 21,7%

Emergency fixes: 12,4%
Routine debugging: 9,3%

Adaptive Maintenance : 23,6%

Accommodating changes to data inputs and files: 17,4%
Accommodating changes to hardware and software: 6,2%

Perfective Maintenance : 51,3%

Customer enhancements: 41.8%
Improvements to documentation: 5.5%

Other (Preventive Maintenance) : 3,4%

According to the study,
maintenance effort, was
broken out as follows:

@ Corrective

Adaptive
@ Perfective
@ Other

PRELIMINARIES — SOFTWARE MAINTENANCE 24

MAINTENANCE REASONS

Changed user requirements

user-requested extensions and modifications

Bug fixes Efficiency.i

scheduled routine fixes Hard

ents (42%)

emergency fixes (more costly due to heavy
pressure) Changed

Changed data formats

Y2K, Euro, tax rates, postal codes, phone numbers,

new standards: UML, XML, COM, DCOM, CORBA,
ActiveX, WAP

Hardware changes

Efficiency improvements

PRELIMINARIES - SOFTWARE MAINTENANCE

25

MAIN CAUSES OF MAINTENANCE PROBLEMS

Poor quality of the software documentation

Poor software quality (e.g., unstructured code, too large
components, inadequate design)

Insufficient knowledge about the system and its domain
(maybe unavailable due to personnel turnover)
Ineffectiveness of maintenance team

low productivity, low motivation, low skill levels, competing
demands for programmer time

PRELIMINARIES — SOFTWARE MAINTENANCE

26

KEY TO MAINTENANCE IS IN DEVELOPMENT

Higher code quality
= less (corrective) maintenance

Anticipating changes
= less (adaptive and perfective) maintenance

Better tuning to user needs
= less (perfective) maintenance

Less code
= less maintenance

,3
;g;mﬂ

' ode

Ol ".

_L w\.mq“!

PRELIMINARIES - SOFTWARE EVOLUTION 28

SOFTWARE AGEING

“Programs, like people, get old. We can’t prevent ageing, but we can
understand its causes, take steps to limit its effects, temporarily reverse
some of the damage it has caused, and prepare for the day when the
software is no longer viable.”

“A sign that the software engineering profession has matured will be
that we lose our preoccupation with the first release and focus on the
long-term health of our products. Researchers and practitioners must
change their perception of the problems of software development.
Only then will software engineering deserve to be called ‘engineering’”

Source: Parnas, 1994 [http://ieeexplore.ieee.org/document/296790/]

http://ieeexplore.ieee.org/document/296790/

PRELIMINARIES — SOFTWARE EVOLUTION

29

REASONS WHY SOFTWARE AGES

maintenance activities

ignorant surgery and architectural erosion
inflexibility from the start

insufficient or inconsistent documentation
deadline pressure

duplicated functionality (code duplication)

lack of modularity

30

Jean-Baptiste Alphonse Karr

PRELIMINARIES - SOFTWARE EVOLUTION 31

CHANGE IS INEVITABLE

New requirements emerge when software is being used
Even as it is being developed !
Business environments change

Feedback loop : the changed software may even be the reason why the
environment changes !

Errors must be repaired
New computers and equipment are added to the system
The performance or reliability of the system may have to be improved

New technology (new standards, new OS, new software versions, ...)

PRELIMINARIES — SOFTWARE EVOLUTION 32

CHANGE INDUCES TECHNICAL DEBT

As a change is started on a software system, often there is a
need to make other coordinated changes at the same time in
other parts of the software.

These other required changes, if not completed immediately,
incur a kind of debt that must be paid at some point in the
future.

This technical debt is “the extra development work that
arises when code that is easy to implement in the short run is
used instead of applying the best overall solution”.

https://en.wikipedia.org/wiki/Technical_debt

PRELIMINARIES - SOFTWARE EVOLUTION 33

CHANGE INDUCES TECHNICAL DEBT

In other words, technical debt is an accumulation of poor
and lazy implementation choices that slowly makes the code
hard to maintain or evolve.

Just like financial debt, if technical debt is not repaid, the
uncompleted changes accumulate interest on top of interest,
because of increased entropy.

The longer you wait to make the changes, the harder it
becomes.

PRELIMINARIES — SOFTWARE EVOLUTION 34

CHANGE IS HARD TO ANTICIPATE

Many changes cannot be anticipated at design time

“The fundamental problem, supported by 40 years of hard experience,
is that many changes actually required are those that the original
designers cannot even conceive of.” [Bennett & Rajlich 2000]

The Heisenberg principle of software development

requirements start changing from the moment you start building or
using a software system

Key challenge for organisations

implementing and managing change to their existing software systems

http://www0.cs.ucl.ac.uk/staff/A.Finkelstein/fose/finalbennett.pdf

PRELIMINARIES - SOFTWARE EVOLUTION B

MAINTENANCE V5. EVOLUTION

Software maintenance typically does not involve major changes
to the system’s architecture

Changes are implemented by modifying existing components
and adding new components to the system

Software evolution is a broader term that encompasses both
software maintenance and bigger changes

At different phases of the software life-cycle

Evolution is intrinsic to the very nature of software development

PRELIMINARIES - SOFTWARE EVOLUTION 36

SOFTWARE EVOLUTION

Evolution may arise
during software development

where the design evolves and matures as the understanding of the problem
to be solved and how to solve it gradually increases

during software maintenance

after deployment, in the continuing process of adapting the system to the
changing needs of its users and usage environment

when the system’s continuous evolution made it too complex to maintain

the system may requiring a more extensive restructuring, redesign or even a
full reimplementation or replacement

PRELIMINARIES — SOFTWARE EVOLUTION

37

DEFINITION OF SOFTWARE EVOLUTION

Software evolution is ...

... all programming activity that is intended to generate a

new software version from an earlier operational version
[Lehman & Ramil 2000]

PRELIMINARIES — SOFTWARE EVOLUTION 38

EVOLUTION MECHANISMS

Different types of evolution can be distinguished according to the mechanism how evolution is
achieved

Manual : changes applied manually by a software developer
Generic : write sufficiently generic and abstract components that are broadly adaptable
Generation : generate lower-level representation from a higher-level specification of the software
a.k.a. vertical transformation or refinement: from more abstract to more concrete
Transformation : old components are transformed into a newer version
a.k.a. horizontal transformation or restructuring: transformation at the same level of abstraction

Configuration : different variants of a software component are available up front but the actual
selection of which one to use is based on a desired configuration

e.g. software product lines, software-as-a-service, context-oriented programming, ...

PRELIMINARIES — SOFTWARE EVOLUTION 39

STATIC VS. DYNAMIC SOFTWARE EVOLUTION

Static evolution
changes are applied manually by a human programmer

part of the software gets adapted or replaced by a programmer and the evolved
software is redeployed

Dynamic evolution
changes are applied automatically at runtime
to better suit the current needs of the software system

by automatically generating, adapting, transforming or selecting parts of the
software

e.g., self-adaptive systems, metaprogramming, context-oriented programming, ...

PRELIMINARIES - SOFTWARE EVOLUTION 40

PROGRAMMING PARADIGMS ...

Many programming paradigms offer dedicated mechanisms to support software
evolution and reuse at the language level

Object-oriented programming offers abstractions like inheritance to enable code reuse
and extensibility

Event-driven programming allows a program to trigger certain actions in response to
dynamically occurring events such as user inputs or actions

Service-oriented programming was originally proposed as a new paradigm to
promote software reuse by having services with a well-defined interface as the main unit

of modularisation

Component-based development is a reuse-based approach to defining, implementing
and composing loosely coupled independent components into software systems

https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Event-driven_programming
https://en.wikipedia.org/wiki/Service-oriented_programming
https://en.wikipedia.org/wiki/Component-based_software_engineering

PRELIMINARIES - SOFTWARE EVOLUTION 41

... PROGRAMMING PARADIGMS

Aspect-oriented programming allows to implement "cross-cutting" concerns, not central

to the business logic, separately from the base functionality, and then "weave" these
back into the code

Metaprogramming is the writing of computer programs that treat other programs as
their data, thus allowing them to read, generate, analyse or transform other programs, or
even modify themselves while running. More specifically, reflection is the ability of a

computer program to examine, introspect, and modify its own structure and behaviour
at runtime.

Context-oriented programming models context as a first class language citizen and
enables programs to adapt their behaviour dynamically to changing contexts.

... (and many more)

https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://en.wikipedia.org/wiki/Metaprogramming
https://en.wikipedia.org/wiki/Reflection_(computer_programming)
http://www.sciencedirect.com/science/article/pii/S016412121200074X

PRELIMINARIES - SOFTWARE EVOLUTION 42

THE LAWS OF SOFTWARE EVOLUTION

After major empirical studies, from 1974 onwards, Lehman and Belady
proposed a number of “laws” that apply to many evolving software systems.

The laws describe a balance between forces that drive new development and
forces that slow down progress.

influenced by thermodynamics
reflect established observations and empirical evidence
Over the past decades the laws have been revised and extended several times:

M. M. Lehman, L. Belady. Program Evolution: Processes of Software Change.
Academic Press, London, 1985, 538pp.

https://en.wikipedia.org/wiki/Lehman%27s_laws_of_software_evolution
http://dl.acm.org/citation.cfm?id=7261

PRELIMINARIES - SOFTWARE EVOLUTION 43

THE LAWS OF SOFTWARE EVOLUTION

There is no such thing as a “finished” computer program.

Lehman and Belady were the first to recognise the phenomenon
of software evolution.

Their laws of software evolution are based on a study of the
evolution of IBM 360 mainframe OS and led, over a period of 20
years, to the formulation of eight Laws of Software Evolution.

M. M. Lehman. Laws of Software Evolution Revisited. Lecture
Notes in Computer Science 1149, pp. 108-124, Springer Verlag,
1997

https://www.rose-hulman.edu/Users/faculty/young/CS-Classes/csse490/cs490-const-and-evol/LawsOfSoftwareEvolutionRevisited.pdf

PRELIMINARIES — SOFTWARE EVOLUTION

L4

THE EIGHT LAWS OF SOFTWARE EVOLUTION

Law 1: Continuing change

Law 2: Increasing complexity

Law 3: Self regulation

Law 4: Conservation of organisational stability
Law 5: Conservation of familiarity

Law 6: Continuing growth

Law 7: Declining quality

Law 8: Feedback system

PRELIMINARIES — SOFTWARE EVOLUTION 45

LAW 1 : CONTINUING CHANGE

Law 1: Continuing change

A program that is used in a real-world environment must be
continually adapted, or else become progressively less satisfactory.

Reasons:
Evolution of the environment ("operational domain”)
Hence, increasing mismatch between the system and its environment

Continuous need for change because requirements and environment
continuously evolving

PRELIMINARIES — SOFTWARE EVOLUTION 46

LAW 2 : INCREASING COMPLEXITY

Law 2: Increasing complexity

As a program is evolved its complexity increases with time unless specific work
is done to maintain or reduce it.

Reasons:
Inspired by the second law of entropy in thermodynamics.
Unaddressed technical debt increases entropy.

Small changes are applied in a step-wise process; each ‘patch’ makes sense
locally, not globally

Effort needed to address accumulated technical debt; a more significant
restructuring or refactoring may be needed

PRELIMINARIES — SOFTWARE EVOLUTION 47

LAW 6 : CONTINUING GROWTH

Law 6: Continuing Growth

Functional content of a program must be continually increased to
maintain user satisfaction over its lifetime.

Related to the first law, but with focus on functional requirements
often one cannot afford to omit existing functionality

"omitted attributes will become the bottlenecks and irritants in
usage as the user has to replace automated operation with
human intervention. Hence they also lead to demand for change”

PRELIMINARIES — SOFTWARE EVOLUTION

48

LAW 7 : DECLINING QUALITY

Law 7: Declining Quality

"Evolving programs will be perceived as of declining
quality unless rigorously maintained and adapted to a
changing operational environment.”

Related the first law, but with focus on observed reliability

PRELIMINARIES - SOFTWARE EVOLUTION 49

APPLICABILITY OF THE LAWS

These laws of software evolution seem to be generally applicable to large,
tailored systems developed by large organisations.

Confirmed in later work by Lehman on the FEAST project
No proof yet whether they are applicable to other types of software as well

Systems that incorporate a significant number of “off the shelf”
components

Small organisations
Medium sized systems

Open source software

Rt B Le T
> ol amhs obj&*%’ :

. v ’ = Deéy
S0 e d"e{’efenCe

W

SOFTWARE MAINTENANCE AND EVOLUTION — QUESTIONS

POSSIBLE QUESTIONS

1. Define and explain, in your own words, the difference between software maintenance and
software evolution.

2. List and explain the different types of software maintenance. Given an illustrative example of
at least three different types of particular maintenance activities.

1. adaptive, corrective, perfective, preventive
2. proactive or reactive, correction or enhancement
3. Discuss the need for and possible reasons for software maintenance, change and evolution.
4. Give some main causes of maintenance problems.
5. Define and explain, in your own words, what technical debt is.
6. What different types of software evolution can be distinguished?

7. Pick one of the laws (1, 2, 6 or 7) of software evolution and explain it.

