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Introduction

(This section is to be completed...)

Linear algebra is the language of mathematics.

Matrices are canonical representations of linear mappings between finite dimensional vector
fields.

Invariants under equivalence relations allow to understand matrices by chopping off re-
dundant information in order to focus on the unique information needed. This is exactly what this
course is about.

Machine learning, Artificial Intelligence, and modern computations are often bound
to very simple Linear Algebraic computations, because, even if the advances of technology allow
to store and process huge data, most problems require an even bigger computational effort, and
often, only Linear Algebraic problems are simple enough, or well-enough understandable, so as to
allow for an efficient resolution.

As every year, there will be a bonus of 0.5 points to the final grade of the students that will have
communicated to me the most important typos/mistakes in the current version of these lecture
notes. Please contact Julien (put me cc) if you find any.

Thanks to Paul Van Dooren, Vladimir Gusev and Guillaume Berger.
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Chapter 1

Matrix algebras

In this introductory chapter, we will give an overview of basic notions required for further de-
velopment of the theory of matrices. The presented concepts are assumed to be known from the
previous courses. Thus, we present only a high-level overview.

A rectangular matrix of dimensions m × n is a collection of mn elements aij (i = 1, 2, . . . , m;
j = 1, 2, . . . , n) organized in a table A (sometimes denoted by Am×n when we want to emphasize
the dimensions):

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...

am1 am2 · · · amn

 . (1.1)

An equivalent notation to (1.1), that we will use as well, is the following:

A = [aij]m,ni,j=1 (or A = [aij] if the dimensions are clear from the context).

In the course, we will typically assume that the elements aij belong to a ring R (e.g., integers,
polynomials, etc.) or to a field F (e.g., reals, complex numbers, rationals, etc.). We refer the
reader to Appendix A for the definitions of these mathematical structures. We denote by Rm×n

and Fm×n the set of m× n matrices with elements in R and F respectively.
We will say that two matrices of equal dimensions are equal if their corresponding elements are

equal:
Am×n = Bm×n ⇐⇒ aij = bij, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

1.1 Sums and products
The addition of two matrices A and B of equal dimensions is defined as follows :

Am×n + Bm×n := [aij + bij]m,ni,j=1.

Exercise 1.1. Show that addition of matrices is commutative, associative, and that the neutral
element is the zero matrix: 0m×n = [0]m,ni,j=1.

We define the scalar multiplication of a matrix A by a scalar α as follows:

αAm×n := [αaij]m,ni,j=1. (1.2)

3



4 CHAPTER 1. MATRIX ALGEBRAS

Note that the scalar α can belong to a different set than the elements of A, provided that the
multiplication is well-defined (for example α ∈ C and aij ∈ C[z], the set of polynomials of a single
variable z with complex coefficients).

Exercise 1.2. Verify that, for all matrices A and B belonging to M, the set of matrices of fixed
dimensions m× n, and for all scalars α, β belonging to a field F or a ring R, it holds that

0A = 0,

1A = A,

(α + β)A = αA + βA,

α(A + B) = αA + αB,

α(βA) = (αβ)A.

(1.3)

If the properties (1.3) are satisfied, then (F ,M, +) forms a vector space, and (R,M, +) a
module (see Appendix A). Typical examples are (R,Rm×n, +) and (C,Cm×n, +) for the vector
spaces, and (R[z],Rm×n[z], +) and (C[z],Cm×n[z], +) for the modules.

The definition (1.2) allows us to define matrix subtraction, denoted by A−B, as the sum of A
and the matrix (−1)B:

Am×n −Bm×n = Am×n + (−1)Bm×n = [aij − bij]m,ni,j=1.

The multiplication of matrices A and B is defined only when their “internal” dimensions are
equal:

Am×lBl×n :=
[∑
k

aikbkj

]m,n
i,j=1

.

The main motivation for this definition is that the product of A and B represents the composition
of the corresponding linear applications.

We define the identity matrix I as the following square diagonal matrix:

I =


1 0 · · · 0
0 . . . . . . ...
... . . . . . . 0
0 · · · 0 1

 .

It can be easily shown that the following properties hold true:

Exercise 1.3.
AI = IA = A (neutral element)
A(B + C) = AB + AC (distributivity)
(B + C)D = BD + CD (distributivity)
A(BC) = (AB)C (associativity)

IfM = Rn×n orM = Fn×n, then the product of two matrices inM is well defined and is also
an element ofM. In the case ofM = Fn×n, if we add the matrix product “·” to the vector space
(F ,M, +), then we obtain the structure of an algebra (see Appendix A).

Note that the addition of matrices is commutative. The multiplication on contrary is not, since
the matrices AB and BA can even have different dimensions.
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Exercise 1.4. Verify that the matrices

A =

 2 1
0 0
1 0

 , B =
[

0 1 2
−1 0 0

]

and
A =

[
2 1
0 0

]
, B =

[
1 0
−1 0

]
do not satisfy AB = BA.

There exist many special classes of matrices with interesting and important properties. The
first such class is the class of square matrices that we will denote in the following way:

A = [aij]ni,j=1 =


a11 a12 · · · a1n
a21 a22 · · · a2n
... ... . . . ...

an1 an2 · · · ann

 .

Exercise 1.5. Show that the set of square matrices of dimension n forms a ring.

We can define other matrix products as well. For example, the Hadamard product of two
matrices A and B of equal dimensions is the matrix whose elements are the products of the
corresponding elements of A and B:

Am×n ⊙Bm×n := [aij · bij]m,ni,j=1.

The Kronecker product of two arbitrary matrices Am×n and Bp×q is the matrix of size mp× nq
whose elements are all possible products between the elements of A and B arranged in the following
way:

A⊗B :=


a11B · · · a1nB

... . . . ...
am1B · · · amnB

 .

Exercise 1.6. Show that if AC and BD are well defined, then

(A⊗B)(C ⊗D) = (AC)⊗ (BD).

As we will see later, these products play an important role in the study of row and column
transformations of a matrix.

The property that the set of square matrices of fixed dimensions is closed under multiplication
(i.e., the product of two matrices from the class belongs to the class as well) allows us to introduce
the notion of matrix powers:

Ap := AA . . . A︸ ︷︷ ︸
p times

.

Trivially, A1 = A.
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Exercise 1.7. Show that for the matrix powers the classical laws of exponentiation hold true: that
is, for all nonnegative integers p, q, and letting A0 := I, we have

ApAq = Ap+q = AqAp and (Ap)q = Apq.

The notion of matrix powers allows us to define the polynomial of a matrix starting from a
scalar polynomial p(λ) = p0 + p1λ + · · ·+ pdλd in the following way:

p(A) := p0I + p1A
1 + · · ·+ pdA

d.

We will see in Section 4.9 that for any function given by a convergent Taylor series

f(λ) =
∞∑
i=0

fiλ
i,

we can define the corresponding matrix function as well:

f(A) =
∞∑
i=0

fiA
i

provided that certain conditions on the spectrum of A are satisfied. Observe that two functions of
the same matrix commute, since the powers of the same matrix commute.

Two basic subclasses of square matrices are the triangular matrices (upper and lower) and the
diagonal matrices:

L =


l11 0 · · · 0
l21 l22

. . . ...
... ... . . . 0

ln1 ln2 · · · lnn

 lower triangular matrix,

U =


u11 u12 · · · u1n
0 u22 · · · u2n
... . . . . . . ...
0 · · · 0 unn

 upper triangular matrix,

D =


d11 0 · · · 0
0 d22

. . . ...
... . . . . . . 0
0 · · · 0 dnn

 diagonal matrix.

For diagonal matrices, we will often use the shorter notation:

D = diag{d11, . . . , dnn}.

We will later see that the triangular and diagonal matrices play an important role in various matrix
decompositions.

We can already note that each of these three classes form, for a fixed dimension n, a ring under
the matrix addition and multiplication. Indeed, the sum and the matrix product preserve their
structure. Furthermore, the product of diagonal matrices is actually commutative (D1D2 = D2D1)
and therefore gives rise to a commutative ring, which is not the case for the general square or
triangular matrices.
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Exercise 1.8. Consider the set of upper triangular Toeplitz matrices, i.e., the upper triangular
matrices with equal elements along the diagonals (tij = ti+k,j+k):

T =


t1 t2 · · · tn

0 t1
. . . ...

... . . . . . . t2
0 · · · 0 t1

 .

Show that these matrices commute.

Exercise 1.9. Consider the set of square, circulant matrices:

C =


c1 c2 · · · cn

cn c1
. . . ...

... . . . . . . c2
c2 · · · cn c1

 .

Show that these matrices commute.

Exercise 1.10. Show that a square matrix of dimension n commuting with all the other matrices
of the same dimension is necessarily a “scalar” matrix, i.e., it has the form cI.

Exercise 1.11. Show that a square matrix of dimension n commuting with a diagonal matrix
diag{a1, . . . , an}, where ai ̸= aj for all i ̸= j, is also diagonal.

1.2 Transpose and conjugate transpose
In this section, we restrict our attention to complex (or real) matrices: A ∈ Cm×n (or A ∈ Rm×n).
The transpose and the conjugate transpose of a complex matrix A of dimensions m × n are the
matrices of dimensions n×m defined respectively by

A⊤ = [aji]n,mi,j=1 (transpose) and A∗ = [āji]n,mi,j=1 (conjugate transpose).

One can easily verify the following properties:

(A⊤)⊤ = A (A∗)∗ = A

(αA)⊤ = αA⊤ (ᾱA)∗ = αA∗

(A + B)⊤ = A⊤ + B⊤ (A + B)∗ = A∗ + B∗

(AB)⊤ = B⊤A⊤ (AB)∗ = B∗A∗.

Relying on these operations, we can define new classes of matrices. A matrix is called sym-
metric, antisymmetric (or skew-symmetric), Hermitian, anti-Hermitian (or skew-Hermitian) if it
satisfies respectively

A = A⊤, A = −A⊤, A = A∗, A = −A∗.

Exercise 1.12. Show that for every matrix A ∈ Cm×n, the matrices AA⊤ and A⊤A are symmetric,
and the matrices AA∗ and A∗A are Hermitian.
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Exercise 1.13. Show that for a square matrix A ∈ Cn×n, the matrix A + A⊤ is symmetric,
the matrix A + A∗ is Hermitian, the matrix A − A⊤ is antisymmetric and the matrix A − A∗ is
anti-Hermitian.

Exercise 1.14. Show that every complex matrix can be written as the sum of a symmetric matrix
and an antisymmetric matrix, and as the sum of a Hermitian matrix and an anti-Hermitian matrix.

A square matrix A ∈ Cn×n is unitary if it satisfies the relations

AA∗ = In = A∗A.

If A is a real matrix, this equation can be rewritten as

AA⊤ = In = A⊤A

and we call A orthogonal.
A normal matrix is a square matrix satisfying

AA∗ = A∗A if A ∈ Cn×n,

AA⊤ = A⊤A if A ∈ Rn×n.

All these matrices have special properties related to their eigenvalues and singular values. We
will discuss them in details later.

Exercise 1.15. Show that the Kronecker product satisfies

(A⊗B)∗ = A∗ ⊗B∗.

Exercise 1.16. Show with the help of the previous exercise that if U1 and U2 are unitary matrices,
then U1 ⊗ U2 is unitary as well.

1.3 Determinant of a matrix

1.3.1 Definition and elementary properties
In order to introduce the concept of determinant of a square matrix An×n defined on a ring R
or a field F (i.e., A ∈ Rn×n or A ∈ Fn×n), we have to first define its “quasi-diagonals” that are
n-tuples of elements of matrix A:

a1j1 , a2j2 , . . . , anjn (1.4)
where the indices

j := (j1, j2, . . . , jn)
constitute a permutation of the set {1, 2, . . . , n}. Hence, we can see that a quasi-diagonal always
consists of n elements of the matrix A in such a way that no two of them lie in the same row or
column of A. The fact that row indices are ascending in (1.4) is actually an arbitrary choice made
to state the definition.

For each quasi-diagonal, we define its parity, denoted by t(j), as the number of inversions jk > jp
for k < p in j. It can be shown that the parity is equal, up to an even integer, to the number of
transpositions, i.e., permutations of two elements, needed to bring j to the standard order. The
determinant of A is finally defined as follows:
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Definition 1.1
With the notation above, we define the determinant of a square matrix An×n as

det(A) =
∑

j
(−1)t(j) a1j1 · a2j2 · . . . · anjn . (1.5)

Observe that the parity in the expression (1.5) can be defined up to an even integer, thus, we
could have defined it as the number of transpositions instead of the number of inversions. We can
further remark that the determinant is multilinear with respect to the rows ai: and with respect to
the columns a:i of the matrix A, since every term in the right-hand side of the expression (1.5) has
a factor corresponding to every row and column of A. We will now present a series of properties
of the function det(A). These properties exist in the “row” version and in the “column” version.
Since they are similar, we will restrict ourselves to the “column” version.

Proposition 1.2: Properties of the determinant
1. det [a:1, . . . , b:j + kc:j, . . . , a:n] = det [a:1, . . . , b:j, . . . , a:n] + kdet [a:1, . . . , c:j, . . . , a:n].

This property simply states that the determinant is multilinear in the columns of A.

2. det(kA) = kndet(A).
This property easily follows from the previous one.

3. det(A⊤) = det(A), if A ∈ Cn×n.
It is easy to see that the quasi-diagonals of A are also quasi-diagonals of A⊤ and vice-versa.
Thus, the same terms appear in formula (1.5) for det(A) and det(A⊤). It remains to show
that their parity is the same (up to a multiple of 2). This is left to the reader.

4. det(A∗) = det(A), if A ∈ Cn×n.
Indeed, det(A∗) = det(Ā⊤) = det(Ā).

5. det [a:1, . . . , a:j, . . . , a:i, . . . , a:n] = −det [a:1, . . . , a:i, . . . , a:j, . . . , a:n].
The permutation of two columns gives rise to an additional permutation for each quasi-
diagonal. Therefore, the sign of the determinant changes as well.

6. a:i = a:j =⇒ det(A) = 0.
The matrix A does not change after the permutation of columns i and j. Thus, by the
previous property we have det(A) = −det(A), which immediately implies that det(A) = 0.

7. a:i = ka:j =⇒ det(A) = 0.
Consequence of properties 1 and 6.

8. det [a:1, . . . , a:i, . . . , a:j, . . . , a:n] = det [a:1, . . . , a:i, . . . , a:j + ka:i, . . . , a:n].
This operation is usually called an elementary (column) transformation. Simply speak-
ing, we add a multiple of column j to another column i. The proof easily follows from
properties 1 and 7.

Starting with these properties, we will easily derive a series of important results that are stated
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as exercises.

Exercise 1.17. Show that for arbitrary matrices Am×n and Bn×m, we have

det
[

A 0
−In B

]
= det

[
A AB
−In 0

]
.

Exercise 1.18. Using the previous exercise, show that for two arbitrary square matrices An×n and
Bn×n, it holds that

det(A)det(B) = det(AB).

Let us now introduce the notions of minor and cofactor. The minor A(kℓ) of dimension n − 1
of a matrix An×n is the determinant of the submatrix obtained by removing the kth row and the
ℓth column:

A(kℓ) := det



a11 · · · a1,ℓ−1 a1,ℓ+1 · · · a1n
... ... · · · ...

ak−1,1 · · · ak−1,ℓ−1 ak−1,ℓ+1 · · · ak−1,n

ak+1,1 · · · ak+1,ℓ−1 ak+1,ℓ+1 · · · ak+1,n
... ... · · · ...

an1 · · · an,ℓ−1 an,ℓ+1 · · · ann


. (1.6)

Since det(A) is linear in each column j and in each row i of A, we can write det(A) as a linear
combination of its elements (Question: What is the formal property of linear applications on
vector spaces that we are using here?):

det(A) = a1jA
c
1j + a2jA

c
2j + · · ·+ anjA

c
nj, (1.7)

det(A) = ai1A
c
i1 + ai2A

c
i2 + · · ·+ ainAc

in, (1.8)

where the coefficients Ac
kℓ are called the cofactors of the corresponding elements akℓ. In the expres-

sions (1.7) and (1.8) of det(A), the term akℓA
c
kℓ consists of all the quasi-diagonals “passing” through

akℓ and thus the cofactor Ac
kℓ clearly contains the quasi-diagonals of the submatrix appearing in

the definition (1.6). Hence, we can expect that there is a relation between Ac
kℓ and A(kℓ). In fact,

we will show that:

Theorem 1.3
With the definitions above,

Ac
kℓ = (−1)k+ℓA(kℓ). (1.9)

Proof. It is enough to use (k − 1) permutations of adjacent rows and (ℓ − 1) permutations of
adjacent columns to bring the element akℓ to position (1, 1) without modifying the order of other
rows and columns. For this new matrix, we have

Âc
11 = (−1)k+ℓAc

kℓ, Â(11) = A(kℓ).

Observe now that for the element â11, we have Âc
11 = Â(11), and the thesis follows.
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Equation (1.9) is a powerful tool that allows to derive many identities involving the determinant
of a matrix. Some of them are given below as exercises.

Exercise 1.19. Show that we have

det(λIn − C) = det



λ −1 0
λ

. . .

. . . . . .
0 λ −1
a0 a1 · · · an−2 λ + an−1


= a0 + a1λ + · · ·+ an−1λ

n−1 + λn

where the matrix Cn×n above is called the companion matrix of the polynomial.

Exercise 1.20. Show that the determinant of a tridiagonal matrix (sometimes referred to as a
Jacobi matrix)

Jn =



a1 b2 0
c2 a2

. . .
. . . . . . . . .

. . . . . . bn
0 cn an


satisfies the following recurrence relation:

det(Jn) = andet(Jn−1)− bncndet(Jn−2).

Exercise 1.21. Verify that, for a Vandermonde matrix, the following identity holds true:

det



1 1 · · · 1
x1 x2 · · · xn
x2

1 x2
2 · · · x2

n
... ... ...

xn−1
1 xn−1

2 · · · xn−1
n

 =
∏
j<i

(xi − xj) .

1.3.2 Generalization: the Laplace and Binet–Cauchy relations
It is possible to generalize the cofactor formulas (1.7) and (1.8) by considering the minors of order
smaller than n − 1. In order to do so, we will introduce an appropriate notation. For a pair of
p-tuples

ip := (i1, i2, . . . , ip) and jp := (j1, j2, . . . , jp)
satisfying

1 ≤ i1 < i2 < · · · < ip ≤ n and 1 ≤ j1 < j2 < · · · < jp ≤ n,

we define the minors of order p of A as

A
(

ip

jp

)
:= det [aik,jℓ ]

p
k,ℓ=1.
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We define a complementary minor of order (n− p) in the following way:

A
( ic

p

jc
p

)
where the (n−p)-tuple icp is the set complement of the p-tuple ip (it means that the complementary
minor is obtained by computing the determinant of the matrix after removing the rows ip and the
columns jp). Finally, we define the complementary cofactors of A as

Ac
(

ip

jp

)
:= (−1)sA

( ic
p

jc
p

)
where

s =
p∑

k=1
(ik + jk).

These definitions allow us to generalize the expansions (1.7) and (1.8) of the determinant in
terms of cofactors.

Theorem 1.4: Laplace
Let A be a matrix of dimensions n×n and ip be a p-tuple of rows (or a p-tuple jp of columns).
Then det(A) is equal to the sum of the

(
n
p

)
products of all possible minors located in these

rows (columns) with their complementary cofactors:

det(A) =
∑
jp

A
(

ip

jp

)
Ac
(

ip

jp

)
, (1.10)

det(A) =
∑
ip

A
(

ip

jp

)
Ac
(

ip

jp

)
. (1.11)

Proof. The proof is similar to the previous one about cofactor expansion, but requires a little bit
more care. We will present only a rough sketch of the proof. First of all, it is easily seen that the
sum has exactly

(
n
p

)
terms, since there are exactly

(
n
p

)
different minors for a given choice of p rows

or columns.
Now, observe that the products of any of the p! quasi-diagonals of the term A

(
ip

jp

)
with any of

the (n− p)! quasi-diagonals of Ac
(

ip

jp

)
are actually quasi-diagonals of A. Since their total number

is equal to (
n

p

)
p! (n− p)! = n!,

we conclude that all quasi-diagonals of A are present in the sums (1.10) and (1.11). Finally, it
remains to show that the parities are equal as well. It can be done in a way similar to the case of
p = 1.
Exercise 1.22. Derive from the Laplace theorem the following identities:

det
[

A11 A12
0 A22

]
= det

[
A11 0
A21 A22

]
= det(A11)det(A22)

if A11 and A22 are square submatrices with dimension p and n− p respectively; and

det
[

A11 A12
A21 0

]
= det

[
0 A12

A21 A22

]
= (−1)p(n+1)det(A12)det(A21)

if A21 and A12 are square submatrices with dimension p and n− p respectively.
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Exercise 1.23. Show that if Ai are square submatrices of dimension p, then it holds that

det



λIp −Ip 0
. . . . . .

. . . . . .
0 λIp −Ip

A0 A1 · · · An−2 λIp + An−1

 =

det
(
A0 + A1λ + · · ·+ An−1λ

n−1 + Ipλ
n
)

.

An important application of the Laplace theorem is the theorem of Binet–Cauchy that allows
to express the determinant of a product of non-square matrices A and B as long as their product
is a square matrix.

Theorem 1.5: Binet–Cauchy
Let m be the m-tuple (1, . . . , m). Let A and B be matrices of dimensions m× n and n×m
respectively. If m ≤ n, then

det(AB) =
∑
jm

A ( m
jm ) B ( jm

m ) .

Proof. Since the matrix AB is a square matrix, we can apply the results of Exercises 1.17 and 1.22
to the matrices A and B:

det
[

A 0
−In B

]
= det

[
A AB
−In 0

]
(1.12)

= (−1)n(−1)m(m+n+1)det(AB)
= (−1)(m+n)(m+1)det(AB)
= (−1)rdet(AB).

Now we can apply the theorem of Laplace to the first m rows of the matrix on the left-hand side
of (1.12). The only nonzero minors for these rows are the minors of A, namely A ( m

jm ), and their
complement cofactors are

(−1)sdet
[
− I ( n

jc
m

)
∣∣∣B ]

, s =
m∑
k=1

(jk + k).

Now we apply the theorem of Laplace again to the last m columns of this matrix. The only nonzero
terms are

(−1)s+tB ( jm
m ) , s + t = n(m + 1) + 2

m∑
k=1

jk ,

and therefore,
(−1)rdet(AB) =

∑
jm

(−1)s+tA ( m
jm ) B ( jm

m ) .

It remains to note that s + t− r remains even and the result follows.
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1.4 Inverse and rank of a matrix
The expansion in terms of cofactors allows us to obtain another important result. The adjugate
matrix of a square matrix An×n is defined as

adj(A) :=
[
Ac
ji

]n
i,j=1

. (1.13)

Note the inversion of indices!

Theorem 1.6
For every square matrix An×n, we have

A · adj(A) = det(A) In = adj(A) · A.

Proof. The result is a straightforward corollary of the definition (1.13), property 6 of the determi-
nant (Proposition 1.2) and the expansion of det(A) in terms of cofactors by rows or columns.

Definition 1.7
We say that a matrix is non-singular if it is a square matrix and its determinant is not equal
to zero.

By Theorem 1.6, we can conclude that a non-singular matrix defined over a field F has an
inverse, since B := det(A)−1adj(A) clearly satisfies

AB = I = BA.

Furthermore, given that

AB = I =⇒ det(AB) = det(A)det(B) = 1,

we can see that all matrices possessing an inverse B have a nonzero determinant. Therefore, if we
are working over a field, then the class of invertible matrices coincides with the class of non-singular
matrices.

Exercise 1.24. Show that the set of square invertible matrices forms a multiplicative group.

Exercise 1.25. Show that the following properties hold true:

adj(A⊤) = adj(A)⊤, adj(A∗) = adj(A)∗,

adj(I) = I, adj(kA) = kn−1adj(A),
(A⊤)−1 = (A−1)⊤, (A∗)−1 = (A−1)∗,

det(A−1) = det(A)−1, (AB)−1 = B−1A−1.
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We have already dealt with the elementary operations of matrices when we talked about the
properties of the determinant. Let us formalize their definitions in terms of their matrix represen-
tations.

A permutation matrix is a matrix that, when applied on the left (resp. right) of A, permutes
two rows (resp. columns) of A:

E(1) =



I
0 · · · 1
... I

...
1 · · · 0

I


← i

← j
.

A scaling matrix is a matrix that, when applied on the left (resp. right) of A, multiplies a row
(resp. column) of A by a scalar k:

E(2) =

 I
k

I

 ← j .

An elimination matrix is a matrix that, when applied on the left (resp. right) of A, adds to a
row (resp. column) of A some other row (resp. column) multiplied by k:

E(3) =



I
1
... I
k · · · 1

I


← i

← j
(resp. its transpose).

We assume that the elementary matrix operations are defined over a field F . Thus, we can say
that

det(E(1)) = −1, det(E(2)) = k ̸= 0, det(E(3)) = 1,

and therefore, E(1), E(2) et E(3) are invertible. Furthermore, we can show that their inverses
have the same form. Thus, we have at our disposal a group (in the mathematical sense of it)
of operations that allow us to manipulate a matrix, and eventually to simplify its form. This is
all we need to quotient the set of matrices by the equivalence relation implied by this group of
transformations, and thus to exhibit our first invariant for matrices:

Theorem 1.8
Every matrix Am×n whose elements belong to a field F can be brought to the following form
by means of invertible (or elementary) transformations of rows and columns:

RAQ =
 Ir 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

 . (1.14)

Proof. We can bring A to such form by means of the following recursive algorithm:

Step 1: Set B := A and i := 1.
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Step 2: If B = 0, then stop; otherwise, we permute the rows and columns of B in order to place
a nonzero element in position (1, 1).

Step 3: We perform a scaling transformation of rows or columns to make b1,1 equal to 1.

Step 4: By means of column elimination transformations, we make the elements to the right of
b1,1 equal to zero; and by means of row elimination transformations b1,1, we make the
elements below b1,1 equal to zero.

Step 5: If i = min(m, n), we stop; otherwise we set B := B(2 : m − i, 2 : n − i) and i := i + 1,
and go to step 2.

This theorem allows us to define an equivalence relation (i.e., a reflexive, symmetric and tran-
sitive relation) on the set of matrices over F with dimensions m× n:

A ∼ B iff RAQ = B (1.15)

where R and Q are products of elementary transformations.
If two matrices belong to the same equivalence class (i.e., A ∼ B), then by means of the

reduction of Theorem 1.8, they can be brought to the same form (1.14), that can be seen as “the
simplest” form of this equivalence class. We will also say that (1.14) is the canonical form of
m × n matrices under elementary transformations of rows and columns. This form is completely
characterized by the integer r, that we will call the rank of the matrix.

Theorem 1.9
The rank of a matrix Am×n whose elements belong to a field F is equal to the largest size of
its nonzero minors.

Proof. Observe that the elementary transformations do not change the size of the largest nonzero
minor. Thus, it is enough to consider the canonical form of A, for which the statement of the
theorem holds trivially.

A square non-singular matrix An×n has a nonzero determinant, and therefore its rank is equal
to n (the determinant is the minor of size n). Thus, from Theorem 1.8, we obtain the following:

Corollary 1.10
Any non-singular matrix whose elements belong to a field F can be written as a product of
elementary transformations.

That is, the equivalence defined in (1.15) can be seen as equivalence under (left and right)
invertible transformations.
Exercise 1.26. The LDU decomposition of a matrix A (whose rows and columns can be permuted)
is given by:

P1AP2 = LDU,

where P1 and P2 are permutation matrices, L and U are triangular (lower and upper respectively)
matrices with ones on the diagonal and D is a diagonal matrix. Such a decomposition is the result
of Gaussian elimination with complete pivoting. Compare it to the canonical form (1.14).
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Theorem 1.11: Schur complement
Let An×n be an invertible submatrix of the matrix (whose elements belong to a field F)

M(n+p)×(n+m) =
[

A B
C D

]
.

Then the rank of M satisfies

rank(M) = n + rank
(
D − CA−1B

)
.

The matrix D − CA−1B is called the Schur complement of M .

Proof. By means of elementary (or invertible) transformations, we obtain[
In 0

−CA−1 Ip

] [
A B
C D

] [
In −A−1B
0 Im

]
=
[

A 0
0 D − CA−1B

]
.

Since A is invertible, the result of the theorem follows immediately.
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Chapter 2

Linear applications, orthogonalization
and the QR factorization

2.1 Vector spaces
In this chapter, we will first study some basic properties of linear subspaces, and then apply them
to the resolution of systems of linear equations.

Remember that a vector space (or linear space) V is a set (V , +) of vectors that forms a
commutative group under vector addition and that is equipped with a product satisfying certain
special properties and allowing the vectors to be multiplied by the elements of a field of scalars
(F , +, ·) (see Appendix A). Classical examples of vector spaces are the sets Rn, Cn, Rm×n and
Cm×n, where the underlying fields are R or C. Other examples are the set of triangular matrices
of fixed dimension or the set of vectors with rational entries.

In the sequel, we will assume that the set of vector components coincides with the field of
scalars F , i.e., V = Fn (actually, this can be done without loss of generality in the case of finite-
dimensional spaces). We remark that, in this setting, the set of vectors on the ring of polynomials,
that is, V = Rn[x], do not constitute a vector space, but a module (see Appendix A).

A linear subspace S ⊂ V is a subset of V closed under linear combinations:

α, β ∈ F , a, b ∈ S =⇒ αa + βb ∈ S.

We can easily show that the intersection of two linear subspaces

S1 ∩ S2 := {x | x ∈ S1, x ∈ S2}

is a linear subspace. We can also observe that the union of two linear subspaces

S1 ∪ S2 := {x | x ∈ S1 or x ∈ S2}

is not necessarily a subspace. On the other hand, the sum of two subspaces, defined as

S1 + S2 := {x + y | x ∈ S1, y ∈ S2},

is a linear subspace.
Given a matrix A ∈ Fm×n, we define the following two linear subspaces:

Ker(A) := {x | Ax = 0, x ∈ V},

Im(A) := {y | y = Ax, x ∈ V},

19
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called the kernel of A and the image of A respectively. The following two subspaces are linear
subspaces as well:

• the image of S under the application of A:

AS := {y | y = Ax, x ∈ S},

• the space generated by the vectors ai (i = 1, . . . , k).

span {a1, a2, . . . , ak} :=
{

y
∣∣∣∣ y =

k∑
i=1

αiai, αi ∈ F
}

.

Exercise 2.1. Verify that S1 ∩ S2, S1 + S2, Ker(A), Im(A) and AS are linear subspaces.

Exercise 2.2. Show that for all matrices R (with suitable dimensions), we have

Ker(RA) ⊇ Ker(A), Im(AR) ⊆ Im(A).

Intuitively, there seems to be a link between the subspaces Ker(A), Im(A) and the solutions of
systems of linear equations. This link is made explicit in the following theorem.

Theorem 2.1
If A ∈ Fn×n is invertible, then the system

Ax = y (2.1)

has a unique solution x for every vector y ∈ Fn, and

Ker(A) = {0}, Im(A) = Fn.

Proof. Since the matrix A is invertible, then a vector x = A−1y is defined for all y ∈ Fn. Thus,
every vector y of Fn has a representation in the form of (2.1) and Im(A) = Fn.

Suppose now that there exist two solutions x1 et x2 for the same right-hand side y. This implies
that A(x1 − x2) = 0 and x1 − x2 = A−10 = 0, i.e., x1 = x2. Therefore, the solution is unique.

Finally, the equation A−10 = 0 also implies that the only element in Ker(A) is 0.

This theorem deals only with the case of square matrices. In order to discuss the general case
of matrices Am×n of arbitrary ranks and dimensions, we need some additional basic concepts that
we will briefly describe here.

We say that k vectors from Fn are linearly independent if the only linear combination equal to
the zero vector is trivial:

k∑
i=1

αiai = 0, αi ∈ F =⇒ αi = 0.

These vectors form a basis of the space S = span {a1, . . . , ak}.
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Exercise 2.3. Show that all vectors x ∈ S = span {a1, . . . , ak} have a unique representation

x =
k∑
i=1

αiai

if {ai | i = 1, . . . , k} is a basis of S.

Exercise 2.4. Show that two bases of a same space S have the same number of elements.

Exercise 2.4 allows us to define the notion of dimension of a vector space V , denoted by dim(V),
as the number of elements in any of its bases.

Lemma 2.2
If Sk ⊆ Sℓ are subspaces of dimensions k and ℓ, where k < ℓ, then every basis {a1, . . . , ak} of
Sk can be extended to a basis {a1, . . . , aℓ} of Sℓ.

Proof. Since k < ℓ, there exists a vector ak+1 ∈ Sℓ that does not belong to Sk = span {a1, . . . , ak}.
Thus,

Sk+1 := span {a1, . . . , ak+1}

is a vector space of dimension k + 1 generated by these k + 1 linearly independent vectors. Fur-
thermore,

Sk ⊆ Sk+1 ⊆ Sℓ.

If k + 1 < ℓ, then we repeat the same reasoning inductively until we obtain a basis of size ℓ.

Theorem 2.3
Let R ∈ Fn×n be invertible and S ⊆ Fn be a linear subspace. It holds that

dim(RS) = dim(S), (a)
Ker(RA) = Ker(A), (b)
Im(AR−1) = Im(A), (c)
Im(RA) = R Im(A), (d)
Ker(AR−1) = R Ker(A). (e)

Proof. (a) Let us consider a basis {s1, . . . , sk} of S. Since R is invertible, {Rs1, . . . , Rsk} is a basis
of RS. Indeed, the linear combination

k∑
i=1

αiRsi = R
k∑
i=1

αisi

is equal to the zero vector only in the case of the trivial solution αi = 0.
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(b)–(e) The fact that R is invertible implies the following statements:

RAx = 0 ⇐⇒ Ax = 0,

y = AR−1x ⇐⇒ y = Az , x = Rz,

y = RAx ⇐⇒ y = Rz , z = Ax,

AR−1x = 0 ⇐⇒ Az = 0 , x = Rz.

Each of them leads to the desired identity.

The above theorem allows us to make a link between the canonical form (1.14) of a matrix A
and certain bases of Ker(A) and Im(A).

Theorem 2.4
If

Am×n = R

[
Ir 0
0 0

]
Q−1

for some invertible matrices R ∈ Fm×m and Q ∈ Fn×n, then

Im(A) = span {r:1, . . . , r:r}, Ker(A) = span {q:,r+1, . . . , q:n}.

Proof. By the previous theorem, we have

Im(A) = Im
(

R

[
Ir 0
0 0

])
= R Im

[
Ir 0
0 0

]
,

Ker(A) = Q Ker
(

R

[
Ir 0
0 0

])
= Q Ker

[
Ir 0
0 0

]
.

Simplifying further, we derive

Im(A) = R Im
[

Ir
0

]
= span {r:1, . . . , r:r},

Ker(A) = Q Im
[

0
In−r

]
= span {q:r+1, . . . , q:n}.

Corollary 2.5
The rank of a matrix A ∈ Fm×n is equal to the dimension of its image Im(A).

2.2 Euclidean and unitary spaces
In this section, we endow our vector space with a simple but yet extremely powerful tool: an inner
product (or dot product). This allows us to define a metric on the vector space, and later will
allow us to use the notion of orthogonality. It turns out that linear applications go along very well
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with these notions: one can very well understand (theoretically and numerically) the way matrices
interact with a Euclidean (unitary) metric, and with the notion of orthogonality. This will lead us
to the QR decomposition and, later, to the Singular Value Decomposition.

Before introducing the concept of orthogonality, we define the inner product as a map ⟨· , ·⟩ :
V × V → F satisfying the following properties:

• ⟨x, x⟩ ≥ 0 ∀x ∈ V ;

• ⟨x, x⟩ = 0 ⇔ x = 0;

• ⟨αx + βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩ ∀x, y, z ∈ V ;

• ⟨x, y⟩ = ⟨y, x⟩ ∀x, y ∈ V .
Note that this requires that the field of scalars is the set of real or complex numbers (for the third
and fourth property to be well defined). Hence, in the rest of these notes (except in Chapter 6,
where polynomial matrices are studied), we will restrict our attention to matrices defined over the
field of real or complex numbers: i.e., F = R or F = C, and V = Rn or V = Cn.

A vector space (V ,F) equipped with an inner product ⟨· , ·⟩ : V × V → F is called Euclidean if
F = R, or unitary if F = C.

For example, observe that the following commonly used products are inner products:

⟨x, y⟩ =
n∑
i=1

xiyi = y∗x, x, y ∈ Cn,

⟨x, y⟩ =
n∑
i=1

xiyi = y⊤x, x, y ∈ Rn.

We can associate a vector norm ∥·∥ : V → R with every inner product in the following way:

∥x∥2 := ⟨x, x⟩.

The following theorem states an important connection between the inner products and their
associated norm.

Theorem 2.6: Schwarz inequality
For any vectors x, y ∈ V , if ⟨· , ·⟩ is an inner product, then one has

|⟨x, y⟩| ≤ ∥x∥ ∥y∥.

Proof. Let us define the scalars β := ⟨x, x⟩, α := −⟨y, x⟩ and the vector z := αx + βy. Since the
norm of z is clearly nonnegative, we have

0 ≤ ∥z∥2 = |α|2⟨x, x⟩+ αβ⟨x, y⟩+ αβ⟨y, x⟩+ |β|2⟨y, y⟩.

Now, observe that, by definition, β is real and nonnegative, and thus

0 ≤ β|α|2 + αβ(−α) + αβ(−α) + β2∥y∥2

= −β|α|2 + β2∥y∥2

= β
(
∥x∥2∥y∥2 − |⟨x, y⟩|2

)
.

If β = 0, then the statement trivially holds; otherwise, we derive the required inequality after the
division by β.
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Exercise 2.5. Using Schwarz’s inequality, show that

|trace(Y ∗X)| ≤ ∥X∥F∥Y ∥F

where X, Y ∈ Cm×n and ∥·∥F is the Frobenius norm (see Appendix B).

The Schwarz inequality allows us to define the angle θ between two vectors x and y as follows:

θ := angle(x, y) if cos(θ) = |⟨x, y⟩|
∥x∥ ∥y∥

, 0 ≤ θ ≤ π

2 .

We say that two vectors are orthogonal if the angle between them is π/2, or equivalently, if
their inner product is equal to zero:

x ⊥ y ⇐⇒ ⟨x, y⟩ = 0 ⇐⇒ angle(x, y) = π

2 .

2.3 Orthogonalization and the QR decomposition
Given two vectors x1 and x2, we can perform their orthogonalization: indeed, define the vectors
y1 and y2 as follows:

y1 := x1,

y2 := x2 −
⟨y1, x2⟩
⟨y1, y1⟩

y1 = x2 − αx1,
(2.2)

then it is clear that
y1 ⊥ y2, span{x1, x2} = span {y1, y2}.

If the vectors {xi} form a basis, i.e., they are linearly independent, then {yi} is a basis of the
same subspace as well. This procedure can be generalized to any basis of an arbitrary r-dimensional
subspace of V and is typically referred to as the Gram–Schmidt orthogonalization process.

Theorem 2.7
If {x1, . . . , xr} is a basis of a subspace S ⊆ V , then the vectors {y1, . . . , yr} defined by the
following recurrence:

y1 = x1,

yp = xp −
p−1∑
j=1

⟨yj, xp⟩
⟨yj, yj⟩

yj, p = 2, . . . , r.
(2.3)

form an orthogonal basis of S.

Proof. The proof is based on recursive application of (2.2). The details are left to the reader.

The vectors {yi} in an orthogonal basis can be arranged as the columns of a matrix Yn×r. The
orthogonality of the basis implies that

Y ∗Y = D = diag {n2
1, . . . , n2

r} where n2
i = ∥yi∥2 ̸= 0
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since a basis cannot contain the zero vector.
If we divide each vector yi by its norm ni, then we obtain an orthonormal basis:

ui = yi
∥yi∥

, ⟨yi, yj⟩ = ⟨ui, uj⟩ = 0 if i ̸= j.

The matrix U with columns given by the vectors ui satisfies

U∗U = Ir, (2.4)

and therefore is an isometry. Conversely, we can also note that the columns of every isometry
(2.4) form an orthonormal basis.

The concepts of orthogonal basis {yi} and orthonormal basis {ui} gain much of their importance
from the simplicity of the representation of a vector x ∈ colspan(Y ) = Im(Y ) = colspan(U) =
Im(U). In fact,

x =
r∑
i=1

⟨x, yi⟩
⟨yi, yi⟩

yi =
r∑
i=1

ciyi, (2.5)

thus it requires only the computation of inner products. This representation easily follows from
the expression Y ∗Y = D:

Dc = Y ∗Y c ⇐⇒ D−1Y ∗x = c ⇐⇒ ci = ⟨x, yi⟩
⟨yi, yi⟩

.

For an orthonormal basis, (2.5) can be simplified even further:

x =
r∑
i=1
⟨x, ui⟩ui.

The matrix representation of the Gram–Schmidt orthogonalization leads us to the QR factor-
ization of a matrix An×r of rank r.

Theorem 2.8: QR factorization
Every matrix A ∈ Cn×r of full column-rank admits a factorization

A = QR (2.6)

where Q ∈ Cn×r is an isometry (i.e., Q∗Q = Ir) and R ∈ Cr×r is an upper triangular matrix
with positive diagonal.

Proof. We will treat the columns of A as the vectors xj. These vectors form a basis of Im(A),
since the rank of A is equal to r. The Gram–Schmidt procedure (2.3) allows us to construct the
columns yj of a matrix Y such that

A = Y C

where

cp,p = 1,

cj,p = ⟨xp, yj⟩
⟨yj, yj⟩

∀j < p,

cj,p = 0 ∀j > p.
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The matrix C and its inverse are upper triangular matrices with only ones on the main diagonal.
By introducing the following positive diagonal matrix:

N = diag {n1, . . . , nr}, ni = ∥yi∥,

we have
(Y N−1)(NC) = A = QR

where Q is an isometry:

Q∗Q = N−1Y ∗Y N−1 = N−1N2N−1 = Ir,

and R = NC is an upper triangular matrix with a positive diagonal.

Exercise 2.6. Show that R is the Cholesky factor of the positive definite matrix A∗A.

We can extend the concept of orthogonality to subspaces as well.

Definition 2.9
The subspaces S1,S2 ⊆ V are orthogonal if each vector in S1 is orthogonal to every vector in
S2:

S1 ⊥ S2 if ⟨x, y⟩ = 0 ∀x ∈ S1, ∀y ∈ S2.

Exercise 2.7. Let X and Y be two matrices whose columns form bases of the subspaces X and Y
respectively. Show that X ⊥ Y if and only if Y ∗X = 0.

We have already seen how to construct an orthogonal basis of an r-dimensional subspace S1 ⊂ V
with the Gram–Schmidt procedure. It is also easy to see that this basis can be completed to an
orthogonal basis of the whole space V :

Im(S1) = S1, S∗
1S1 = D1 =⇒ ∃S2 s.t. S∗

2S1 = 0, Im [ S1 |S2 ] = V . (2.7)

This allows us to define the orthogonal complement of a subspace S:

S⊥ := {x | ⟨x, y⟩ = 0 ∀y ∈ S}.

Corollary 2.10

If S is a subspace of dimension r, then S⊥ is a subspace of dimension n− r.

Proof. Straightforward from (2.7): if the columns of [ S1 |S2 ] form an orthogonal basis of V , then
it is clear that Im(S2) = S⊥ and dim(Im(S2)) = rank(S2) = n− r.

Exercise 2.8. Show that the orthogonal complement satisfies the following properties:

(S⊥)⊥ = S,

(S1 + S2)⊥ = S⊥
1 ∩ S⊥

2 ,

(S1 ∩ S2)⊥ = S⊥
1 + S⊥

2 .

If we choose the bases (given by the columns of S1 and S2 in (2.7)) to be orthonormal, then
we immediately obtain the following lemma:
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Corollary 2.11

Let U1 ∈ Cn×r be an isometry (i.e., U∗
1 U1 = Ir), then there is always a matrix U2 ∈ Cn×(n−r)

such that U = [ U1 |U2 ] is a unitary matrix.

2.4 Computational aspects
In this section, we will present algorithms that are used to construct the orthogonal matrix ap-
pearing in the QR factorization. In fact, the transformations that we will describe are the basis of
all modern algorithms performing orthogonal decompositions of a matrix. Although these trans-
formations are well defined for F = C, we will restrict ourselves to the case F = R to simplify the
notation.

2.4.1 Givens transformations
Although these transformations can be applied in vector spaces of arbitrary dimension n ≥ 2, they
are initially defined in R2. For every vector x ∈ R2, there exists a transformation G ∈ R2×2 such
that GG⊤ = G⊤G = I2 and

Gx =
[
∥x∥2

0

]
.

In fact, this transformation is a rotation in R2:

G =
[

c s
−s c

]
,

with
c = cos(θ), s = sin(θ) for some θ ∈ R

or
c = x1/∥x∥2, s = x2/∥x∥2 for some x ∈ R2.

It is easy to see that a Givens transformation corresponds to a rotation with angle θ (see Figure 2.1).

e1

e2

x

x1

x2

e1

e2

∥x∥

θ

G

Figure 2.1: Geometrical interpretation of the Givens transformation.

Exercise 2.9. How to construct the complex Givens transformation G ∈ C2×2 that transforms an

arbitrary vector x ∈ C2 into
[
∥x∥
0

]
?
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We apply the Givens rotations in Rn simply by applying it to the coordinates i and j:

Gi,j =


Ii−1

c s
Ij−i−1

−s c
In−j

 ∈ Rn×n.

It follows that Givens transformations are very cheap to apply, since they require only O(1) oper-
ations.

2.4.2 Householder transformations
Another classical orthogonal transformation is the Householder transformation H ∈ Rn×n, which
acts on a given vector x ∈ Rn and satisfies

H⊤H = HH⊤ = In, Hx =


±∥x∥2

0
...
0

 .

We can construct this transformation as follows:

H = In − 2vv⊤

v⊤v
where v = x∓ ∥x∥2e1.

Observe that by construction H is symmetric. It is orthogonal as well, since

HH⊤ = H2 = In − 4vv⊤

v⊤v
+ 4v(v⊤v)v⊤

(v⊤v)2 = In.

We note that the above is valid for any v ̸= 0 and that H does not change if v is scaled with a
nonzero constant α. In order to choose v, we impose that

Hx = x− 2v
(

v⊤x
v⊤v

)
= ±e1∥x∥2,

If we scale v such that 2v⊤x = v⊤v, we get the desired form for v.
Geometrically, a Householder transformation can be seen as a reflection. Every vector x can

be written as a vector x1 parallel to v and a vector x2 orthogonal to v:

x = x1 + x2 with x1 ∈ span {v}, x2 ∈ span {v}⊥.

From the definition of H, we have
Hx = −x1 + x2,

in other words, the transformation H reflects the vector x about the hyperplane defined by
(span {v})⊥. The effect of a Householder transformation in R3 is illustrated in Figure 2.2.

Note that the sign of ±∥x∥2 is not fixed. The sign determines whether the reflected vector Hx
is going to be in the direction of e1 or in the opposite direction. For numerical reasons, the sign
of x1, the first component of x, is often chosen:

v = x + sign(x1)∥x∥2e1.

In fact, it guarantees the smallest possible rounding errors (see, e.g., [Wilkinson, 1965]).
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v
x

x2

x1

−x1

Hx

(span {v})⊥

Figure 2.2: Geometrical interpretation of Householder transformation

Exercise 2.10. How to construct the complex Householder transformation H ∈ Cn×n that trans-
forms an arbitrary vector x ∈ Cn into

Hx =


±∥x∥

0
...
0


and satisfies H∗H = HH∗ = In?

2.4.3 QR factorization
We will now use these transformations to recursively construct a unitary matrix Q ∈ Cm×m such
that

Q∗Am×n =
[

Rn×n
0(m−n)×n

]
,

where R is upper triangular. Since Q∗Q = Im, we can also write

A = Q

[
R

0(m−n)×n

]
= Q1R

where Q1 ∈ Cm×n consists of the first n columns of Q, and thus is an isometry (i.e., Q∗
1Q1 = In).

We will refer to this notation as the compact QR factorization.
The construction of Q is done via recursive application of Householder transformations. First,

we find the transformation H1 such that the first column a:1 of A becomes a vector parallel to e1:

H1a:1 =


x1
0
...
0

 .

If we assume that the matrix A has full rank, then clearly a:1 ̸= 0 and x1 ̸= 0. If we apply this
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transformation to the matrix A, we obtain

H1A =


x1 × · · · ×
0
... Â2

0


︸ ︷︷ ︸

n


m

where Â2 has rank n− 1 since H1A has rank n. Then we apply a transformation of the form


1 0 · · · 0
0
... Ĥ2

0




x1 × · · · ×
0
... Â2

0

 =



x1 × × · · · ×
0 x2 × · · · ×
0 0
... ... Â3

0 0


(2.8)

where we choose the Householder transformation Ĥ2 in such a way that the first column of Â2
becomes parallel to e1. If we take H2 := diag {1, Ĥ2}, then the product H2H1A is equal to the
right-hand side of (2.8). We continue this process inductively until we obtain

Hn · · ·H2H1 A =



x1 × · · · ×
0 . . . . . . ...
... . . . . . . ×
... . . . xn
0 · · · · · · 0
... ...
0 · · · · · · 0


=
[

R
0(m−n)×n

]
, xi ̸= 0,

where each transformation Hi brings the corresponding column of A to the desired form. Since
the product of unitary transformations is unitary, we have constructed Q = H∗

1 · · ·H∗
n such that

Q∗A =
[

R
0(m−n)×n

]
.

Observe now that the matrix R does not necessarily have a positive diagonal, contrary to Theo-
rem 2.8. This can be easily corrected by applying an additional transformation D = diag{±1},
which is unitary.

If Am×n is not a full column-rank matrix, but has rank r < n, we can easily modify the previous
algorithm by adding permutations of the columns of A (and of its submatrices Âi) to make sure
that the leading column at every step remains nonzero. In this way, we obtain a factorization of
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the form

Hr · · ·H2H1 A P =



x1 × · · · × × · · · ×
0 x2

. . . ... ... ...
... . . . . . . × ... ...
0 · · · 0 xr × · · · ×
0 · · · · · · 0 0 · · · 0
... ... ... ...
0 · · · · · · 0 0 · · · 0


, xi ̸= 0

where P is a permutation matrix.
Let us digress for the rest of this subsection in order to emphasize a corollary of independent

interest. We can see that the first r rows of the resulting matrix are linearly independent and the
others are zero. This leads to the following theorem:

Theorem 2.12
Every matrix A ∈ Cm×n can be transformed by a unitary transformation on the left into a
matrix

Q∗
ℓA =

 A1

0(m−r)×n


where the rows of A1 ∈ Cr×n are linearly independent.

Proof. We have just seen that the desired form can be achieved with Q∗AP , but the permutation
P does not affect the independence of rows, so it can be omitted.

By means of transposition, we immediately obtain the dual result:

Theorem 2.13
Every matrix A ∈ Cm×n can be transformed by a unitary transformation on the right into a
matrix

AQr = [ A1 | 0m×(n−r) ]
where the columns of A1 ∈ Cm×r are linearly independent.

By combining these two theorems, we finally arrive to the following result:

Theorem 2.14
Every matrix A ∈ Cm×n can be transformed by unitary transformations on the right and on
the left into a matrix

U∗AV =
 A11 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)


where A11 ∈ Cr×r has full rank.

Proof. It is enough to first apply Theorem 2.13 and then Theorem 2.12 to the matrix A1.
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We want to mention that, in many practical cases, this construction leads to an upper triangular
matrix A11. Such a decomposition is called a URV decomposition and it allows us to estimate the
singular values of A introduced in Chapter 3 (see, e.g., [Stewart, 1973]).

2.4.4 Complexity and numerical issues
Let us now compare Householder and Gram–Schmidt methods for the construction of the QR
factorization. Therefore, we will first formalize the computations by means of a pseudocode written
in the MATLAB language.

The construction of a Householder transformation H satisfying Hx = −sign(x1)∥x∥2e1 relies
on the computation of the vector v = x + sign(x1)∥x∥2e1. This can be done by means of the
following function that normalizes v to v⊤v = 2 and thus H = I − vv⊤. One may count (can
you?) that the complexity of this function is 5m + O(1) flops1.

function v = Householder(x)
% this routine computes the vector v for the Householder transformation
% H = I − vv⊤ with v⊤v = 2 such that Hx = −sign(x1)∥x∥2e1
n = length(x);
normx = norm(x,2);
v(1) = x(1)+sign(x(1))*normx;
v(2:n) = x(2:n);
v = v*sqrt(2/v'*v);
end

In order to apply this transformation on the left of a matrix Am×n, we will call the following
function:

function A = col.Householder(A,v)
% this routine applies the Householder transformation H = I − vv⊤

% to the rows of A where v is normalised such that v⊤v = 2
s = v'*A;
A = A−v*s;
end

Observe that this clever implementation of the product only costs 4mn + O(m + n) instead of
Ω(m2n) flops.

The complexity of these functions is defined as the number of flops needed for the computa-
tions. The function Householder requires 5m + O(1) flops, while the functions col.Householder
require 4mn + O(m + n) flops. Therefore, most of the work is done during the application of the
transformation H and not during its construction.

One possible implementation of the Householder algorithm for the QR factorization of a matrix
Am×n (with column pivoting) is given below.

for j = 1:n
c(j) = norm(A(1:m,j),2)^2;

end
r = 0;

1a flop = one addition/subtraction or one multiplication/division
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t = max(c);
k = index(t,c);
while t>0

r = r+1;
swap(A(1:m,r),A(1:m,k));
swap(c(r),c(k));
v(r:m) = Householder(A(r:m,r));
A(r:m,r:n) = col.Householder(A(r:m,r:n),v(r:m));
% update c, t, k
if r<n

for j = r+1:n
c(j) = c(j)−A(r,j)^2;

end
t = max(c(r+1:n));
k = index(t,c(r+1:n));

else
t = 0;

end
end

Up to some relatively small modifications, this algorithm is the one implemented in the MAT-
LAB function qr. The total number of operations required by the procedure is

r∑
i=1

4(m− i + 1)(n− i + 1) + O(rm + rn)

since, at every iteration of the while loop, we apply the Householder transformation to a matrix
of size (m− i+1)× (n− i+1). The complexity is bounded by 4mnr if r ≪ n or by 2mn2 if r tends
to n (we assume m≫ n). Regarding the propagation of the rounding errors, it can be shown that
this algorithm has in general better numerical properties than the Gram–Schmidt algorithm (even
though the latter is easier to implement):

for k = 1:n
R(k,k) = norm(A(1:m,k),2);
Q(1:m,k) = A(1:m,k)/R(k,k);
for j = k+1:n

R(k,j) = Q(1:m,k)'*A(1:m,j);
A(1:m,j) = A(1:m,j)−Q(1:m,k)*R(k,j);

end
end

The complexity is 4m flops for every cycle of the inner for loop, and thus

4m
n∑
k=1

(n− k) ∼= 2mn2

for the algorithm in total. The complexity is of the same order as for the Householder algorithm,
but the numerical properties are worse.
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Chapter 3

Unitary transformations and the
Singular Value Decomposition

3.1 Diagonalization by unitary transformations
The goal of this section is to obtain a matrix decomposition of the form

A = R

[
Ir 0
0 0

]
Q−1 (3.1)

for an arbitrary matrix Am×n, but with constraints on the transformations R and Q: they have to
be unitary in the case A ∈ Cm×n and orthogonal in the case A ∈ Rm×n. Such restrictions make it
more difficult to derive than the decomposition (2.6), but it can still be done in a similar fashion.

The unitary and orthogonal transformations form a transformation group, and as a conse-
quence, we will obtain a new canonical form and new invariants. Only this time, our transfor-
mation group is more limited: we restrict it to isometries. Thus, we will obtain invariants that
characterize the way our matrices act on the norm of vectors. This is the fundamental geometric
meaning of the Singular Value Decomposition.

Since the cases of real and complex numbers are more or less the same, we will provide the
details only for the most general case of complex numbers.

We will start with the case of a Hermitian matrix A = A∗. Indeed for these matrices, we
will observe that simple algebraic manipulations allow us to achieve the above-described task, and
moreover in this case one can pick Q = R! In order to derive the required diagonal decomposition,
we will borrow tools that will be central in the next chapter: the eigenvalues and eigenvectors of
a square matrix.

Definition 3.1
An eigenvector and an eigenvalue of a square matrix A ∈ Cn×n are a pair consisting of a
vector x ̸= 0 ∈ Cn and a scalar λ ∈ C satisfying the equation

Ax = λx. (3.2)

Note that (3.2) is equivalent to

(λIn − A)x = 0, x ̸= 0, (3.3)

35
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and implies that the matrix (λIn − A) is singular, i.e.,

det(λIn − A) = 0.

Let us return to the aforementioned problem: the diagonal decomposition of a Hermitian matrix
A ∈ Cn×n. Observe that the polynomial χ(λ) := det(λIn−A) has degree n (since the coefficient of
λn is equal to 1). Thus, it has at least one root λ1 ∈ C. We know, from our hard work in Chapter 1,
that (3.3) will admit a nonzero solution x, which directly gives us an eigenvector-eigenvalue pair!
After normalization, we have u1 := x/∥x∥, i.e., u1 is an eigenvector with norm equal to 1.

By Lemma 2.11, we can extend the vector u1 with a matrix U⊥
1 whose columns provide an

orthonormal basis of the orthogonal complement of span {u1}. This gives the matrix

U1 =
[

u1

∣∣∣U⊥
1

]
∈ Cn×n, U∗

1 U1 = In = U1U
∗
1 .

Therefore,

Â := U∗
1 AU1 =


λ1 a⊤

1

0
... A2

0

 .

The first column of Â is indeed equal to

 u∗
1

(U⊥
1 )∗

Au1 =
 u∗

1

(U⊥
1 )∗

u1λ1 =


λ1

0
...
0

 .

Since we assumed that A is Hermitian (A = A∗), we can conclude that Â∗ = U∗
1 A∗U1 = Â.

Therefore, λ1 has to be a real number, a1 = 0 and A∗
2 = A2:

U∗
1 AU1 =


λ1 0 · · · 0
0
... A2

0

 . (3.4)

This decomposition is actually the base case of an inductive proof allowing us to diagonalize a
Hermitian matrix, as formalized in the following theorem:

Theorem 3.2
Every Hermitian matrix A ∈ Cn×n can be diagonalized by a unitary transformation U ∈ Cn×n:

U∗AU =


λ1 0 · · · 0
0 . . . . . . ...
... . . . . . . 0
0 · · · 0 λn

 . (3.5)

with λi ∈ R.
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Proof. It suffices to apply the decomposition (3.4) inductively: since A2 is Hermitian, we can find
again a unitary transformation Û2 such that

Û∗
2 A2Û2 =


λ2 0 · · · 0
0
... A3

0

 . (3.6)

where λ2 is real and A3 is Hermitian. If we define the matrix

U2 :=


1 0 · · · 0
0
... Û2

0

 ,

it is not hard to see that U2 is unitary as well (can you prove it?) and

U∗
2 U∗

1 AU1U2 =



λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0
... ... A3

0 0


.

By repeating this procedure with A3 and subsequent matrices, we obtain

U∗
n−1 · · ·U∗

2 U∗
1 A U1U2 · · ·Un−1 =


λ1 0 · · · 0
0 . . . . . . 0
... . . . . . . 0
0 · · · 0 λn

 .

Since the product of unitary transformations is unitary as well, the statement of the theorem
follows.

Remark 3.1.

1. Note that

det(λIn − U∗AU) = det(U∗(λIn − A)U)
= det(U∗)det(λIn − A)det(U)
= det(λIn − A),

due to
det(In) = det(U∗U) = det(U∗)det(U) = 1.

The eigenvalues are not changed by the similarity transformation. Furthermore, det(λIn −
U∗AU) = ∏n

i=1(λ− λi), and the diagonal elements of U∗AU are the eigenvalues of A.
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2. The decomposition (3.5) shows that the eigenvalues of a Hermitian matrix are real.

3. If the matrix A is real, then its eigenvectors are real as well as the corresponding unitary
matrix U (i.e., U is orthogonal: U ∈ Rn×n, U⊤U = UU⊤ = In).

4. If at each step of the construction of (3.5) we choose the largest remaining eigenvalue of A,
then we derive a matrix with decreasing λi’s.

We will restate all these remarks in the form of a theorem:

Theorem 3.3
The eigenvalues of a Hermitian matrix A ∈ Cn×n are invariant under unitary similarity trans-
formations:

B = U∗AU.

Every class of equivalence defined by this transformation group has a unique canonical rep-
resentative which is the diagonal matrix Λ with the eigenvalues of A decreasing along the
diagonal.

Note that the above theorem does not answer the question whether a transformation U diago-
nalizing a matrix A is unique or not. In fact, this transformation is unique up to a transformation
Uup that commutes with Λ.
Exercise 3.1. Assuming that all the diagonal elements of Λ are distinct, show that the matrix Uup

is necessarily diagonal and consists only of phases:

Uup = diag {eiψ1 , . . . , eiψn}.

Consider now the most general case of arbitrary matrices Am×n. We will show in the following
theorem that it is possible to obtain a quasi-diagonalization under unitary transformations of rows
and columns.

Theorem 3.4: Singular Value Decomposition
For every matrix A ∈ Cm×n, there exist unitary transformations U ∈ Cm×m (U∗U = Im) and
V ∈ Cn×n (V ∗V = In) such that

A = UΣV ∗ where Σ =


σ1 0

. . .
0 σr

0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

 ,

with real positive singular values:
σ1 ≥ . . . ≥ σr > 0.

The value r and the r-tuple (σ1, ..., σr) are uniquely defined, and as a consequence, the matrix
Σ constitutes a canonical form under unitary transformations, that is, under transformations
of the form

B = Ũ∗AṼ

where Ũ and Ṽ are two unitary matrices.
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Proof. Observe that the matrix A∗A is Hermitian and we can apply Theorem 3.2. Thus, it is
possible to diagonalize A∗A using a unitary matrix:

V ∗A∗AV = Λ, λ1 ≥ λ2 ≥ . . . ≥ λn, (3.7)

where λi are the eigenvalues of A∗A. It implies that λi = ∥Av:i∥2
2 ≥ 0 and we can define

σ2
i := λi.

For σi ̸= 0, we can define the vectors u:i in the following manner:

Av:i = σiu:i. (3.8)

The equation (3.7) immediately implies that the vectors u:i are orthonormal.
Assume now that there are r nonzero singular values σi. We extend the basis u:i (i = 1, . . . , r)

to obtain an orthonormal basis of the whole space and arrange it in a unitary matrix:

U = [u:1, . . . , u:r|u:r+1, . . . , u:m]. (3.9)

Using (3.8) and (3.9), it can be easily shown that

AV = UΣ where Σ =



σ1 0
. . .

0 σr

0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

 ,

Now it remains to post-multiply the first equation by V ∗. From (3.7), we conclude that we have
σ1 ≥ . . . ≥ σr > 0 as well.
It remains to prove that if we pre- or post-multiply our matrix A by a unitary transformation, it
preserves the Σ term (the singular values), but not the left and right unitary matrices U or V .
Let B = Ũ∗AṼ where Ũ and Ṽ are two unitary matrices.
Since the singular values of a matrix A are given by the square root of the eigenvalues of A∗A and
the eigenvalues of a Hermitian matrix are invariant under similarity transformation (Theorem 3.3),
we have

σi(B) =
√

λi(B∗B) =
√

λi(Ṽ ∗A∗AṼ ) =
√

λi(A∗A) = σi(A).

Remark 3.2.

1. If the matrix A is real, then the vectors u:i (i = 1, . . . , m) and v:i (i = 1, . . . , n) are real as
well, and U and V are orthogonal matrices.

2. The transformations U and V diagonalize the matrices AA∗ and A∗A respectively, since

U∗AA∗U = ΣΣ⊤, V ∗A∗AV = Σ⊤Σ.

Furthermore, the columns of U and V are the eigenvectors of AA∗ and A∗A respectively.
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3. If H is Hermitian, then it can be decomposed in the following way:

H = UΛU∗,

and thus HH∗ = H∗H = UΛ2U∗. Moreover, we have:

H = U · |Λ| · sign(Λ) · U∗ = UΣV ∗.

In particular, the singular values of a Hermitian matrix are the absolute values of the eigen-
values: Σ = |Λ|.

4. The transformations U and V are not uniquely defined. It is easy to see that all pairs of
unitary matrices Uup ∈ Cm×m, Vup ∈ Cn×n satisfying

UupΣ = ΣVup

lead to
UUupΣV ∗

upV
∗ = UΣV ∗ = A

which represents another SVD of A. It is possible to show that these are the only possible
degrees of freedom of this decomposition. Namely, if m = n = r and Σ has distinct diagonal
elements, then Uup = Vup = diag {eiϕ1 , . . . , eiϕn}.

3.2 Applications of the SVD

3.2.1 Orthonormal bases for Ker(A) and Im(A)
There are many applications of the singular value decomposition (SVD). The most important one
comes from its combination with Theorem 2.4:

Im(A) = span {u:1, . . . , u:r},

Ker(A) = span {v:r+1, . . . , v:n},

rank(A) = r.

Thus, we can construct, from the SVD, orthonormal bases for Ker(A) and Im(A).

3.2.2 Linear transformations and the four fundamental subspaces
For every matrix Am×n mapping a Euclidean (or unitary) vector space X = Fn to another Eu-
clidean (or unitary) vector space Y = Fm, we can define its dual matrix Ã with respect to the
inner products ⟨· , ·⟩X and ⟨· , ·⟩Y defined in the corresponding spaces: Ã is the unique n×m matrix
satisfying

⟨Ax, y⟩Y = ⟨x, Ãy⟩X , ∀x ∈ X , ∀y ∈ Y .

This definition is very general and is valid even in the case of operators between infinite-dimensional
spaces. In the matrix case with the classical inner products (x∗y for F = C and x⊤y for F = R),
we have encountered the dual already many times: for F = C, we have

y∗Ax = ⟨Ax, y⟩Y = ⟨x, Ãy⟩X = y∗Ã∗x, ∀x ∈ X , ∀y ∈ Y
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which implies that
Ã = A∗.

In the case of F = R, by a similar reasoning, we obtain

Ã = A⊤.

The following theorem states the fundamental connection between the spaces Im and Ker of
dual operators A and Ã.

Theorem 3.5
For every linear mapping A : X → Y between finite-dimensional spaces X and Y , we have

Ker(A) = Im(Ã)⊥,

Ker(Ã) = Im(A)⊥,

Im(A) = Ker(Ã)⊥,

Im(Ã) = Ker(A)⊥.

Proof. In order to prove the first identity, we make the following observation:

x ∈ Ker(A) ⇐⇒ ⟨Ax, y⟩Y = 0 ∀y ∈ Y ,

but ⟨Ax, y⟩Y = ⟨x, Ãy⟩X , and therefore

x ∈ Ker(A) ⇐⇒ ⟨x, Ãy⟩X = 0, ∀y ∈ Y

⇐⇒ ⟨x, z⟩X = 0, ∀z ∈ Im(Ã)
⇐⇒ x ∈ Im(Ã)⊥.

The other identities are derived by observing that (X⊥)⊥ = X (this is where the “finite dimension”
assumption is required) for all spaces X and that (Ã)̃ = A for all matrices A.

This theorem eventually will allow us to establish a connection between the characterization
of the spaces Ker(A) and Im(A), the singular value decomposition and the solutions x ∈ X := Fn
of a linear system of equations

Am×nx = y

for a matrix A of arbitrary rank r and a vector y ∈ Y := Fm.

Lemma 3.6
1. Im(A) = Y ⇐⇒ r = m ⇐⇒ ∃Ar s.t. AAr = Im
⇐⇒ there exists a solution x to Ax = y for every y ∈ Y (surjectivity).

2. Ker(A) = {0} ⇐⇒ r = n ⇐⇒ ∃Aℓ s.t. AℓA = In
⇐⇒ the system Ax = y has a unique solution (injectivity).

Proof.
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1. Im(A) = Y implies r = m (Theorem 2.4), and thus A = R [ Im | 0 ]Q−1 (Theorem 1.8). By

taking Ar := Q

[
Im
0

]
R−1, we have AAr = Im. Therefore, x := Ary satisfies Ax = y for all

vectors y. The latter observation can be restated as follows: all vectors y can be written as
a linear combination of the columns of A. Thus, Im(A) = Y and the equivalence has been
shown.

2. Ker(A) = {0} implies r = n (Theorem 2.4), and thus A = R

[
In
0

]
Q−1 (Theorem 1.8).

By taking Aℓ := Q [ In | 0 ] R−1, we have AℓA = In. If we consider two solutions Axi = y
(i = 1, 2), then A(x1 − x2) = 0 and x1 − x2 = Aℓ(0) = 0. In other words, the solutions
are unique. Applying the last statement to y = 0, we obtain that Ker(A) = {0}, and the
required equivalence has been shown.

Note that if both conditions in Lemma 3.6 hold at the same time, then A is bijective and
m = n = r (we are thus in the case of Theorem 2.1).

Before stating the connections with the singular value decomposition, we will introduce the
concept of direct sum of two subspaces.

Definition 3.7
If two subspaces have only the zero vector in common, then their sum is called the direct sum
and is denoted by ⊕:

X1 ∩ X2 = 0 =⇒ X1 ⊕X2 := X1 + X2.

If the subspaces are orthogonal as well, then we say that their sum is orthogonal:

X1 ⊥ X2 =⇒ X1 ⊕⊥ X2 := X1 + X2.

The following lemma describes an important property of these concepts.

Lemma 3.8
Every vector x ∈ X1 ⊕X2 has a unique decomposition x = x1 + x2, where xi ∈ Xi (i = 1, 2).

Proof. It is enough to find a basis {x(i)
1 , . . . , x(i)

ri
} for each of the subspaces Xi and observe that

their union is a basis for X1 ⊕ X2. Since the representation of a vector is unique with respect to
the basis (see Exercise 2.3), the result follows.

For the orthogonal sum, the trivial case is given by

X = S ⊕⊥ S⊥

for all subspaces S ⊆ X .
Let us apply this to the subspaces of Theorem 3.5 associated with the following system of

equations:
Am×nx = y, x ∈ X , y ∈ Y .
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Let

X1 := Im(Ã), X2 = Ker(A),
Y1 := Im(A), Y2 = Ker(Ã),

(3.10)

then
X = X1 ⊕⊥ X2, Y = Y1 ⊕⊥ Y2. (3.11)

If we choose the coordinate system compatible with the decompositions (3.11), then the matrix
A has the form

A =
 A11 A12

A21 A22

 where Aij : Xj 7→ Yi.

Theorem 3.9
In the coordinate system (3.10) and (3.11), the matrix Am×n has the form

A =
 A11 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)


where A11 ∈ F r×r is bijective.

Proof. Since {
A11x1 + A12x2 = y1
A21x1 + A22x2 = y2

,

we can conclude that yi = Ai2x2 = 0 for all vectors x2 ∈ Ker(A). Thus, A12 = A22 = 0.

Furthermore, Im
[
A11
A21

]
= Y1 requires that A21 = 0 and A11 has full rank (thus, is invertible).

The connection with the singular value decomposition should be clear now. In the following
coordinate system:

U∗AV =
 Σr 0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

 , Σr = diag {σ1, . . . , σr},

we clearly have

X1 = Im
[

Ir
0

]
, X2 = X⊥

1 ,

Y1 = Im
[

Ir
0

]
, Y2 = Y⊥

1 .

It implies that, within the initial coordinate system of the matrix A,

A = UΣV ∗ = U1ΣrV
∗

1 ,

with
U = [ U1︸ ︷︷ ︸

r columns

|U2 ], V = [ V1︸ ︷︷ ︸
r columns

|V2 ] ,
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the respective subspaces are given by

X1 = Im(V1), X2 = Im(V2),
Y1 = Im(U1), Y2 = Im(U2).

Furthermore, this choice of bases for Y1 = Im(A) and X1 = Ker(A)⊥ gives a “canonical”
representation of the bijection

A11 : Ker(A)⊥ → Im(A)

since it is diagonal. The singular values σi (i = 1, . . . , r) can be interpreted as follows. We construct
a ball within the space X1 of radius 1 centered at the origin:

BX1(0, 1) = {x | x ∈ X1, ∥x∥2 ≤ 1}.

This set is mapped by A11 = diag {σ1, . . . , σr} to an ellipsoid in Y1:

EY1(0, Σ) = {y | y ∈ Y1, ∥Σ−1
r y∥2 ≤ 1}.

1

1

σ2

σ1

Σr

Figure 3.1: Arbitrary orthogonal bases of S1 and S2.

An illustration in the two-dimensional case (F = R and r = 2) is given in Figure 3.1. On the
left of the figure, we have the disk representing the set BX1(0, 1) and on the right, we have the
ellipsoid representing EY1(0, Σ). Note that the singular values measure the deformation of vectors
in X1 by A11 (and A as well).

3.2.3 Projections and generalized inverses
A projection P is a square matrix that satisfies P 2 = P . In other words, if we project a vector x
twice, then we obtain the same result as if we projected it only once: P (Px) = Px. The image of P
is the space on which we project. The kernel of P is the set of vectors projected to 0. For projections
defined on Cn (i.e., P ∈ Cn×n), we say that the projection is orthogonal if Ker(P ) ⊥ Im(P ).
In this case, by Theorem 3.5, we have Ker(P ) = Im(P ∗)⊥ and Ker(P ∗) = Im(P )⊥, so that
Im(P ) = Im(P ∗) and Ker(P ) = Ker(P ∗), and thus P = P ∗.

Let A ∈ Cm×n be an arbitrary matrix. If A is not square or if det(A) = 0, then A is not
invertible. Nevertheless, we would like to define a matrix X which is “as close as possible” to an
inverse of A.
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Definition 3.10
Given a matrix A ∈ Cm×n, we will call any matrix X ∈ Cn×m satisfying the equations

(1) AXA = A,

(2) XAX = X,

(3) AX = (AX)∗,

(4) XA = (XA)∗,

(3.12)

a pseudoinverse or Moore-Penrose inverse of A.

As we will soon see, it is uniquely defined for every matrix A. If only part of the conditions hold,
e.g. only (1) and (3), then we call any matrix satisfying them a generalized (1,3) inverse (we will
always assume that at least one of the top two conditions holds). Since such generalized inverses
have to satisfy a smaller number of constraints, they might not be uniquely defined anymore. For
example,

A =
[

1 0
0 0

]
, X =

[
1 x
0 0

]

satisfy equations (1), (2) and (4). Therefore, for all values of x, the matrix X is a generalized
(1,2,4) inverse of A.

Exercise 3.2. Show that if X satisfies

• (1), then AX is a projection;

• (1) and (3), then AX is an orthogonal projection;

• (2), then XA is a projection;

• (2) and (4), then XA is an orthogonal projection.

As we have seen, the Singular Value Decomposition allows us to separate A in an invertible and
a nilpotent part. We will then leverage it in order to construct the pseudoinverse: given a matrix A,
a matrix X satisfies one of the equations (3.12) if and only if the transformed matrices Â = U∗AV
and X̂ = V ∗XU satisfy it as well. Thus, we can study these equations in the “appropriate”
coordinate system and restrict ourselves to the case of a diagonal matrix Â:

Â = U∗AV =
[

Σr 0
0 0

]
.

Theorem 3.11
The Moore-Penrose inverse AI of a matrix A ∈ Cm×n is unique and is equal to

AI = V

[
Σ−1
r 0
0 0

]
U∗.
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Proof. Let us consider the matrix Â =
[
Σr 0
0 0

]
. For this diagonal matrix, we can easily see that

ÂI =
 X̂11 X̂12

X̂21 X̂22


must satisfy X̂11 = Σ−1

r due to (1), X̂12 = 0 due to (3), X̂21 = 0 due to (4), and finally X̂22 = 0
due to (2). Therefore, ÂI is well defined and unique. After the transformation, we have

AI = V ÂIU∗

that is unique as well. Although the transformations U and V of the SVD are not unique, the
degrees of freedom disappear in the product AI = V ÂIU∗.

The singular value decomposition is sometimes given in a more compact form, which gets rid
of the nilpotent part, and is handy in the algebraic expression of projectors:

Definition 3.12: Compact SVD
Given the Singular Value Decomposition of an arbitrary matrix A ∈ Cm×n:

A = U

[
Σr 0
0 0

]
V ∗,

we define its compact SVD decomposition

A = U1ΣrV
∗

1

where
U = [ U1︸ ︷︷ ︸

r columns

|U2 ], V = [ V1︸ ︷︷ ︸
r columns

|V2 ].

In particular, U1 ∈ Cm×r and V1 ∈ Cn×r are isometries (U∗
1 U1 = Ir = V ∗

1 V1).

Note that this notation allows us to write the Moore-Penrose inverse in a more compact form:

AI = V1Σ−1
r U∗

1 .

We immediately see that the projections AAI and AIA (see Exercise 3.2) can be written as
follows:

PA := AAI = U1U
∗
1 ,

PÃ := AIA = V1V
∗

1 .

The projection spaces of these orthogonal projections are Im(A) and Im(Ã) respectively.
Note that if P is a projection, then (I − P ) is a projection as well:

(I − P )2 = I − 2P + P 2 = I − P.
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Furthermore, if P is orthogonal (i.e., if P = P ∗), then I − P is also orthogonal. By applying it to
the projections PA and PÃ, we have

I − PA = U2U
∗
2 ,

I − PÃ = V2V
∗

2 .

Note that these four projections are orthogonal projections on the fundamental spaces of A and
its dual Ã.

The following proposition shows that every projection P admits a particular representation.

Proposition 3.13
Every projection P ∈ Cn×n has a representation P = XY ∗ where X, Y ∈ Cn×r, Y ∗X = Ir,
and r is the rank of P . If P is an orthogonal projection matrix, then we can choose X = Y .

Proof. We start with the compact SVD of P :

P = U1ΣrV
∗

1 .

Since P 2 = P , we have that Σ−1
r U∗

1 P 2V1 = Σ−1
r U∗

1 PV1 and thus

V ∗
1 U1Σr = Ir.

It suffices to set X = U1Σr and Y = V1.
If P is an orthogonal projection matrix (P 2 = P and P ∗ = P ) then U1 = V1 and Σr = Ir.

3.2.4 Least squares problems and Tikhonov regularization
We will analyze now the solutions of a system of equations

Ax = y

in the general case of a matrix A ∈ Cm×n of rank r. Let A = U

[
Σr 0
0 0

]
V ∗ be the SVD of A.

If we take
x̂ = V ∗x, ŷ = U∗y,

then the system is reduced to {
Σrx̂1 + 0x̂2 = ŷ1

0x̂1 + 0x̂2 = ŷ2
(3.13)

with the proper partitioning of x̂ and ŷ. It is clear that the system (3.13) admits a solution if
and only if ŷ2 = 0. In this case, it suffices to take x̂1 = Σ−1

r ŷ1 as a solution. This necessary and
sufficient condition can be stated as [

ŷ1
ŷ2

]
∈ Im

[
Σr 0
0 0

]

or
y ∈ Im(A)
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in the original coordinate system. Observe that the choice x̂2 is arbitrary in (3.13), and putting
x̂2 = 0 guarantees that the solution has the smallest possible norm, since ∥x∥2

2 = ∥x̂∥2
2 = ∥x̂1∥2

2 +
∥x̂2∥2

2. Such a solution with the smallest norm can also be written as

x̂ =
[

x̂1
x̂2

]
=
[

Σ−1
r 0
0 0

] [
ŷ1
0

]
= ÂI ŷ

and
x = V x̂ = V ÂI ŷ = V

[
Σ−1
r 0
0 0

]
U∗y = AIy

where AI is the Moore-Penrose inverse of A.
If ŷ2 ̸= 0, then the system is not compatible. What should we do in this case? In many

applications, one would like to obtain the least squares solution, i.e., find a vector x minimizing
the error ∥Ax− y∥2:

min
x
∥Ax− y∥2

2 = min
x̂

∥∥∥∥∥
[

Σrx̂1 − ŷ1
−ŷ2

]∥∥∥∥∥
2

2

= min
x̂1
∥Σrx̂1 − ŷ1∥2

2 + ∥ŷ2∥2
2

= ∥ŷ2∥2
2 for x̂1 = Σ−1

r ŷ1.

Again, the choice of x̂2 is arbitrary and does not affect the minimal value. But, clearly, x̂2 = 0
gives the solution with the smallest norm. It can be written as

x̂ =
[

x̂1
x̂2

]
=
[

Σ−1
r 0
0 0

] [
ŷ1
ŷ2

]
= ÂI ŷ

and
x = V x̂ = V ÂI ŷ = V

[
Σ−1
r 0
0 0

]
U∗y = AIy

where AI is the Moore-Penrose inverse of A. To summarize the discussion, we state the following
general theorem.

Theorem 3.14
Let A ∈ Cm×n be a matrix of rank r. The solution of the system of linear equations

Ax = y

has the following properties:

• if m = n = r: x = A−1y is unique;

• if m = r < n: x = Ary is a solution for all matrices Ar such that AAr = Im; moreover,
x = AIy is the solution with the smallest norm;

• if m > r = n: for all matrices Aℓ such that AℓA = In, the vector x = Aℓy is a solution
if and only if y ∈ Im(A); moreover, x = AIy is the unique least squares solution;

• if r < m, n: x = AIy is the least squares solution and has the minimal norm among all
the least squares solutions.
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Proof. It suffices to transform the system

U∗AV =
[

Σr 0
0 0

]

and apply the results of Lemma 3.6.

Tikhonov regularization

In many applications, the encountered least squares problems

Am×nx = y,

where m > r = n, are such that the singular values are very different: σ1 ≫ σn. One such example
is the polynomial interpolation problem. Let

p(x) =
n−1∑
i=0

aix
i

be a polynomial for which its values at the points xi are known:

yi = p(xi), i = 1, . . . , m, xi ̸= xj if i ̸= j.

If m ≥ n, then we can uniquely reconstruct the polynomial from the measurements (xi, yi) since
1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
... ... ... ...
1 xm x2

m · · · xn−1
m




a0
a1
...

an−1

 =


y1
y2
...

ym


is a compatible system of rank n (why?). The vector a ∈ Rn of the coefficients is the solution of
the least squares problem

Am×na = y.

It is possible to show that if we take many measurements (m ≫ n), the difference between the
singular values σi of the matrix A becomes very large since σ1 grows with m while σn remains
bounded.

Thus, the least squares solution

x = AIy = V

 σ−1
1 0

. . .
0 σ−1

n

0n×(m−n)

U∗y

= V

 σ−1
1 0

. . .
0 σ−1

n




ŷ1
...

ŷn

 = V Σ−1
n ŷ1

is very sensitive to the noise ∆y. In fact, the perturbed solution x + ∆x satisfies

(x + ∆x) = V Σ−1
n (ŷ1 + ∆ŷ1)
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and therefore,
∥∆x∥2

∥x∥2
= ∥Σ

−1
n ∆ŷ1∥2

∥Σ−1
n ŷ1∥2

≤ σ1

σn

∥∆ŷ1∥2

∥ŷ1∥2
= σ1

σn

∥∆y1∥2

∥y1∥2
.

This inequality follows from

∥My∥2 ≤ ∥M∥2∥y∥2, ∥My∥2 ≥ ∥M−1∥−1
2 ∥y∥2.

Concluding, if σ1 ≫ σn, the signal to noise ratio in the solution can be much worse than in the
measurements. We can “control” this phenomenon by introducing a term proportional to ∥x∥2 in
order to penalize the growth of x:

min
{
∥Ax− y∥2

2 + δ2∥x∥2
2

}
= min

∥∥∥∥∥
[

A
δI

]
x−

[
y
0

]∥∥∥∥∥
2

2
. (3.14)

It turns out that in this modified least squares problem, all the singular values are lower bounded
by δ, which attenuates the bad behaviour exhibited above. This is a consequence of the following
lemma:

Lemma 3.15
For any A ∈ Cm×n,

σi

([
A
δI

])
=
√

σ2
i (A) + δ2 ≥ max {σi(A), δ}.

Proof. Simply notice that
[
A∗ δI

] [A
δI

]
= A∗A + δ2I.

Of course this approach comes at a price: we do not really compute the solution minimizing
the error, but only an approximated version of this. However in practice, it is much wiser to
compute a robust solution to an approximate problem, than a numerically unstable solution to an
exact problem! The technique (3.14) above is commonly known in the numerical linear algebra
community as the Tikhonov regularization.

3.2.5 Unitarily invariant norms
In this section, we are going to establish a link between some matrix norms and the singular value
decomposition. The basic notions and definitions about the norms of vectors and matrices are
given in Appendix B. We will just recall that a matrix norm (on Cm×n) is unitarily invariant if
for every matrix A ∈ Cm×n, we have

∥A∥ = ∥U∗AV ∥ if U, V are unitary.

Proposition 3.16
The 2-norm and the Frobenius norm of A ∈ Cm×n:

∥A∥2 := sup
x ̸=0

∥Ax∥2

∥x∥2
, ∥A∥F :=

[∑
i,j

|ai,j|2
]1/2

are unitarily invariant.
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Proof. Observe first that the 2-norm of a vector is unitarily invariant:
∥Ux∥2 = (x∗U∗Ux)1/2 = (x∗x)1/2 = ∥x∥2.

It immediately implies that

∥U∗AV ∥2 = sup
x ̸=0

∥U∗AV x∥2

∥x∥2
= sup

y ̸=0

∥U∗Ay∥2

∥V ∗y∥2
= sup

y ̸=0

∥Ay∥2

∥y∥2
,

where we put y := V x. For the Frobenius norm, note first that

∥A∥F =
[∑

j

∥a:j∥2
2

]1/2
=
[∑

i

∥ai:∥2
2

]1/2
.

It immediately implies that ∥A∥F = ∥U∗A∥F = ∥AV ∥F .

This result allows us to express these norms solely in terms of the singular values of A:
∥A∥2 = ∥Σ∥2 = σ1 = σmax,

∥A∥F = ∥Σ∥F =
[∑

i

σ2
i

]1/2
.

Proposition 3.17
If A ∈ Cn×n is invertible, then

∥A−1∥2 = σ−1
n = σ−1

min.

Proof. Straightforward from ∥A−1∥2 = ∥V Σ−1U∗∥2 = ∥Σ−1∥2 = σ−1
n .

The following theorem (given without proof) due to John von Neumann states that the norms
that can be expressed as a special function of singular values are exactly the unitarily invariant
norms.

Theorem 3.18
A matrix norm ∥·∥ (on Cm×n) is unitarily invariant if and only if it is a symmetric gauge
function ϕ of the singular values σ = (σ1, . . . , σs) (s = min{m, n}), i.e., a function which is a
norm on Rs, and such that it is

• permutationally invariant: ϕ(Pσ) = ϕ(σ) for all permutation P

• absolute: ϕ(Dσ) = ϕ(σ) for all diagonal unitary matrices D (diagonal matrices whose
diagonal elements are ±1).

Note, the last condition is mentioned for the completeness of the definition of symmetric
gauge function but it is not necessary for this theorem because the singular values are always
non-negative.

Typical examples of such norms are constructed from the vector σ of singular values:

∥A∥ = ∥σ∥p =
[∑

i

|σi|p
]1/p

, 1 ≤ p ≤ ∞.
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3.2.6 The canonical angles

The singular value decomposition allows us to introduce the concept of canonical (or principal)
angles between two subspaces leading to various applications in statistics and signal processing.

Starting from orthonormal bases of subspaces S1 and S2, given by the columns of S1 and S2
respectively:

S∗
1S1 = Ir1 , S∗

2S2 = Ir2 ,

we can construct other orthonormal bases of the same spaces. By Theorem 2.3, we have

Im(SiUi) = Im(Si) if Ui is invertible, i = 1, 2.

If, on top of that, the matrices Ui are unitary (U∗
i Ui = UiU

∗
i = Iri

), then SiUi are orthonormal
bases as well:

UiU
∗
i = Iri

, Ŝi = SiUi =⇒ Ŝ∗
i Ŝi = Iri

, i = 1, 2.

This brings us to the following theorem.

Theorem 3.19
Given two subspaces Si ⊆ Cn (i = 1, 2). There exist orthonormal bases, given by the columns
of Ŝi respectively, and satisfying

Ŝ∗
1 Ŝ2 =


σ1 0

. . .
0 σr

0r×(r2−r)

0(r1−r)×r 0(r1−r)×(r2−r)

 , 1 ≥ σ1 ≥ . . . ≥ σr > 0.

Proof. Fix some orthonormal bases: Si = Im(Si) (i = 1, 2). Let

S∗
1S2 = U1


σ1 0

. . .
0 σr

0r×(r2−r)

0(r1−r)×r 0(r1−r)×(r2−r)

U∗
2

be the singular value decomposition of the matrix S∗
1S2. Note that the columns of Ŝi := SiUi are

orthonormal bases of the corresponding subspaces. Furthermore, Ŝ∗
1 Ŝ2 has the required form. It

remains to show that the singular values σi are smaller or equal to 1. Note that σi is equal to
the inner product of two orthonormal vectors (ith columns of Ŝ1 and Ŝ2). Thus, by the Schwarz
inequality (Theorem 2.6), we have

σi = |⟨ŝ1i, ŝ2i⟩| ≤ ∥ŝ1i∥∥ŝ2i∥ = 1.
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If the spaces Si (i = 1, 2), are of equal dimension k, then we will often include the singular
values that are equal to zero in the notation:

Ŝ∗
1 Ŝ2 =


σ1 0 · · · 0
0 . . . . . . 0
... . . . . . . 0
0 · · · 0 σk

 , 1 ≥ σ1 ≥ . . . ≥ σk ≥ 0.

We define the canonical angles θi between S1 and S2 as

cos(θi) = σi.

If we put Θ = diag {θ1, . . . , θk}, we can write it simply as Ŝ∗
1 Ŝ2 = cos(Θ). It is the matrix equivalent

of the equation defining the angle between two vectors of norm 1.
We will now give the geometric interpretation of the canonical angles in the case of S1 and

S2 being subspaces of dimension 2 in R3. We start with two orthonormal bases of S1 and S2
(Figure 3.2). After rotations of the axes, we have biorthogonal bases (Figure 3.3) and the matrix

S∗
1S2 =

[
1 0
0 cos(θ2)

]

is diagonal. In R3, biorthogonal bases of two subspaces of dimension 2 necessarily have a vector
in common. Thus, θ1 is equal to zero and its cosine is equal to 1. The other angle θ2 is indeed the
angle between the planes corresponding to S1 and S2.

0

S1

S2

Figure 3.2: Arbitrary orthogonal bases of S1 and S2.

Exercise 3.3. How can we define the notion of canonical angles between two spaces of different
dimension?

An application in signal processing that we will mention is based on the following lemma :
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S1

S2

θ2

Figure 3.3: Biorthogonal bases of S1 and S2.

Lemma 3.20
Let X ∈ Cm×n and Y ∈ Cm×n be two matrices of rank n. There exist invertible transforma-
tions Tx, Ty ∈ Cn×n such that X̂ = XTx and Ŷ = Y Ty satisfy X̂∗

Ŷ ∗

 [ X̂ Ŷ
]

=
[

In Σ
Σ In

]
,

where Σ is a diagonal real matrix with decreasing diagonal.

Proof. First, we perform the QR decomposition of the matrices X and Y :

X = QxRx, Y = QyRy.

Afterwards, we find the singular value decomposition of Q∗
xQy:

U∗
x(Q∗

xQy)Uy =


σ1 0 · · · 0
0 . . . . . . 0
... . . . . . . 0
0 · · · 0 σk

 .

It is not hard to verify that Tx = R−1
x Ux and Ty = R−1

y Uy provide the desired result.

If the columns of X and Y are the samples of stochastic processes (or “signals”), then the QR
factorization performs a “decorrelation” of all {x:i} and all {y:i}. The {σi} provided by the SVD
measure the “principal correlations” between the signal spaces of {x:i} and {y:i}.
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3.2.7 Polar decomposition and the Procrustes problem
The singular value decomposition allows us to derive the polar decomposition of a square matrix.

Theorem 3.21
Every square matrix A ∈ Cn×n admits a polar decomposition:

A = HQ,

where H ∈ Cn×n is Hermitian positive semidefinite and Q ∈ Cn×n is unitary (Q∗Q = In).

Proof. Starting from A = UΣV ∗, it suffices to take H = UΣU∗ and Q = UV ∗.

We will see later that the matrix Q can be written as an imaginary exponential of a Hermitian
matrix. So the polar decomposition of a matrix A can be written in the following form:

A = H1e
iH2 where H∗

i = Hi ∈ Cn×n are positive semidefinite.

It can be seen as a natural extension of the polar decomposition of a scalar.

Exercise 3.4. Show that for every positive semidefinite matrix H and every unitary matrix Q, we
have

|trace(HQ)| ≤ trace(H).

Exercise 3.5. How could you extend the polar decomposition to the case m ̸= n?

This decomposition arises in the Procrustes problem. This character from the Greek mythology
used to force his victims to position themselves (in an optimal manner) on his bed and stretched
them with a hammer if they were too small, or amputated the excess length with his axe if they
were too large (he died after Theseus forced him to fit his own bed). The corresponding matrix
problem is to find the optimal rotation Q that minimizes the error ∥AQ⊤ − B∥2

F (the rows of A
represent the reference points of the victim, and the rows of B represent the reference points of
the bed).

Exercise 3.6. Show that the polar decomposition of B⊤A leads to an optimal rotation Q that
minimizes ∥AQ⊤ −B∥2

F .

3.2.8 Principal component analysis
In this application, usually known as PCA, we consider a set of points {xj}j=1,...,n in Rm with
components denoted by xij (i = 1, . . . , m).

We consider the matrix Xm×n whose jth column contains the point xj, i.e., in the ith row
and jth column we have xij. These points are assumed to be randomly generated according to
a Gaussian distribution, and we would like to estimate the mean and covariance matrix of the
process.

First, we will shift the values by means of

x̂i = xi − c
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in order to make the mean of x̂i equal to zero. Clearly, it suffices to set c = 1
n
X1, where 1 ∈ Rn

is the vector of ones. Indeed, we have X̂1 = 0 where

X̂ = X(I − n−111⊤).

Afterwards, we perform a rotation
x̃i = U⊤x̂i

in order to make the coordinates x̃ij and x̃ik of these new points mutually uncorrelated, that
is, we would like to have ∑m

i=1 x̃ijx̃ik = 0 for every j ̸= k. It immediately implies that X̃X̃⊤

is diagonal, where X̃ = U⊤X̂. We can find U from the SVD of X̂ = UΣV ⊤, since putting
X̃ = U⊤X̂ = ΣV ⊤ leads to X̃X̃⊤ = ΣΣ⊤ = D with di = σ2

i arranged in non-increasing order.
This way, the autocorrelations ∑m

i=1 x̃2
ij = dj are ordered.

We will find more on this technique of extremely high practical importance in the seminar at
the end of the semester. . .

3.3 Variational problems
In this section, we will show that the eigenvalues of a Hermitian matrix and the singular values of
an arbitrary matrix can be seen as the stationary points of certain functions of x. It will allow us
to characterize the eigenvalues and the singular values as solutions to optimization problems.

For a Hermitian matrix H ∈ Cn×n, we define the Rayleigh quotient of a nonzero vector x as

R(x) := ⟨Hx, x⟩
⟨x, x⟩

= x∗Hx
x∗x

, x ̸= 0 ∈ Cn.

Theorem 3.22
The Rayleigh quotient of a Hermitian matrix H ∈ Cn×n is real and satisfies

λmin(H) ≤ R(x) ≤ λmax(H).

Proof. We start with the decomposition H = UΛU∗ and put x̂ = U∗x. Substituting, we have

R(x) =
∑n
i=1 λi|x̂i|2∑n
i=1|x̂i|2

.

The quotient is indeed real and it can be easily shown that the required inequalities are satisfied.

By choosing x̂ = e1 and x̂ = en, we observe that both bounds are attained. Thus, we have the
following corollary (suppose λ1 ≥ . . . ≥ λn):

Corollary 3.23

λn = min
x ̸=0

R(x), λ1 = max
x ̸=0

R(x).

In other words, the extremal eigenvalues of a Hermitian matrix are the stationary points of
R(x). The following theorem establishes this property for all eigenvalues of H.
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Theorem 3.24
The stationary points of the Rayleigh quotient R(x) are exactly the eigenvectors xi of H. The
corresponding values are the eigenvalues λi of H.

Proof. To simplify the presentation, we will present the proof only for the case of a real (and
therefore symmetric) matrix H.

Since
⟨Hx, x⟩ =

∑
i,j

hijxixj,

we have
∂⟨Hx, x⟩

∂xk
= 2

n∑
j=1

hkjxj = 2Hk:x

where we have used hkj = hjk. By applying this formula to H = I, we obtain

∂⟨x, x⟩
∂xk

= 2xk.

Therefore,
∂R(x)

∂xk
= ∂

∂xk

[
⟨Hx, x⟩
⟨x, x⟩

]
= ⟨x, x⟩2Hk:x− ⟨Hx, x⟩2xk

⟨x, x⟩2
.

For x = xi where xi is an eigenvector of H, we have

∂R(xi)
∂xk

= 2 ⟨xi, xi⟩
⟨xi, xi⟩2

[Hk:xi − λixk] = 0

and
R(xi) = ⟨Hxi, xi⟩

⟨xi, xi⟩
= λi.

The gradient is given by

∇R(x) =
[

∂R(x)
∂x1

, . . . ,
∂R(x)
∂xn

]⊤

= 2[Hx−R(x)x]
⟨x, x⟩

.

Clearly, it is equal to zero if and only if x is an eigenvector x = xi and R(x) = λi.

We are now able to derive a variational definition of the eigenvalues of H. Before we proceed,
we require the following lemma:

Lemma 3.25
Let Sj ⊆ Cn be a subspace of dimension j. Then, it holds that

min
x ̸=0∈Sj

R(x) ≤ λj, max
x ̸=0∈Sj

R(x) ≥ λn−j+1.
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Proof. Let x1, . . . , xn be the eigenvectors of H. Observe that

Ŝj = span {xj, . . . , xn}

is a subspace of dimension n− j + 1. Furthermore, it has a nonzero intersection with Sj, otherwise
Ŝj +Sj would be of dimension (n− j + 1) + j = n + 1. Let x0 ∈ Sj ∩ Ŝj. Since this vector belongs
to Ŝj, we can represent it as

x0 =
n∑
i=j

αixi ̸= 0.

Observe now that its Rayleigh quotient is

R(x0) =
∑n
i=j|αi|2λi∑n
i=j|αi|2

≤ λj,

and thus
min

x ̸=0∈Sj

R(x) ≤ λj.

The proof of the second inequality is dual.

The following result known as the Courant–Fisher theorem is a direct consequence of this
lemma.

Theorem 3.26: Courant–Fisher

For any Hermitian matrix H ∈ Cn×n, the Rayleigh quotient R(x) = ⟨Hx,x⟩
⟨x,x⟩ satisfies

λj = max
Sj

min
x ̸=0∈Sj

R(x),

λn−j+1 = min
Sj

max
x ̸=0∈Sj

R(x),

where Sj ⊆ Cn is a subspace of dimension j.

Proof. It suffices to show that the two bounds of the preceding lemma can be achieved. Indeed,
by taking

Sj = span {x1, . . . , xj} [resp. Sj = span {xn−j+1, . . . , xn}],

we see that the equality is achieved due to R(xi) = λi.

Now, we will switch to the case of an arbitrary matrix A. Recall that the matrices AA∗ and
A∗A are Hermitian, and thus, we can apply the preceding theorem to derive the following result
about the singular values of A.
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Theorem 3.27
The singular values of an arbitrary matrix A ∈ Cm×n are given by

σj(A) = max
Sj

min
x ̸=0∈Sj

∥Ax∥2

∥x∥2
,

σn−j+1(A) = min
Sj

max
x ̸=0∈Sj

∥Ax∥2

∥x∥2
,

where Sj ⊆ Cn is a subspace of dimension j.

Proof. It is enough to apply the preceding theorem to the matrix A∗A or AA∗.

This result finally leads us to a major application of the singular value decomposition.

Theorem 3.28: Low-rank approximation
Let A ∈ Cm×n be a matrix of rank r. The best approximation (with respect to the matrix
2-norm) of A by a matrix B ∈ Cm×n of rank s < r satisfies

min
rank(B)≤s

∥A−B∥2 = σs+1(A).

Proof. By Theorem 3.27, for a matrix B of rank s, we have

σs+1(A) ≤ max
x ̸=0
Bx=0

∥Ax∥2

∥x∥2

since Ker(B) is a space of dimension n− s. Therefore,

σs+1(A) ≤ max
x ̸=0
Bx=0

∥(A−B)x∥2

∥x∥2
≤ ∥A−B∥2

and
σs+1(A) ≤ inf

rank(B)≤s
∥A−B∥2.

It is not hard to see that the infimum is reached by the following matrix

B =
s∑
i=1

uiσiv∗
i (3.15)

and thus
A−B =

r∑
i=s+1

uiσiv∗
i .

Furthermore, it is clear that it is not possible to obtain a better bound by means of a matrix B of
rank strictly smaller than s.

The matrix (3.15) is always a solution of 3.28 and it is the unique solution only when σs+1 = 0
(that is, if s = r).
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Exercise 3.7. Construct a matrix B, with rank(B) ≤ s < r, that is different from (3.15) and
reaches the same bound on ∥A−B∥2.

This exercise shows us that the solution of the theorem is far from being unique. The set
of matrices satisfying the equality is quite complicated and in general poorly understood. By
contrast, in the case of the Frobenius norm, we have more satisfying results:

Theorem 3.29: Eckart–Young
Let A ∈ Cm×n be a matrix of rank r. The best approximation (with respect to the matrix
Frobenius norm) of A by a matrix B ∈ Cm×n of rank s < r satisfies

min
rank(B)≤s

∥A−B∥2
F = σ2

s+1 + · · ·+ σ2
r .

Proof. See [Wilkinson, 1965] or [Golub and Van Loan, 2012].

It turns out that the bound in the above theorem is attained by the same matrix (3.15), but
this time, it is unique if and only if σs > σs+1.

These theorems help us to define the important concept of the “numerical rank” of a matrix.
The problem of computing the rank of a matrix A is quite delicate, since the set of matrices of
full rank is dense in the set of all matrices and every algorithm unavoidably introduces rounding
errors, thus perturbing the matrix A. We will denote these perturbations by ∆A. Typically, a
bound on ∆A is available:

∥∆A∥2 ≤ ϵc∥A∥2.

Finally, the numerical rank of A is the minimal rank among the matrices A + ∆A such that

∥∆A∥2 ≤ ϵc∥A∥2.

In order to find it, it suffices to discard the singular values σi ≤ ϵcσ1 and consider the corresponding
approximation A + ∆A. By Theorem 3.28, we can conclude that no matrix of rank smaller than
A + ∆A can satisfy the condition. The matrix ∆A can be seen as the “noise” produced by the
algorithm computing the rank. This discussion reveals the crucial importance of the singular value
decomposition for the computation of the rank of a matrix.

Last but not least, as we will see in Chapter 4, the SVD can be computed robustly. . .

3.4 Recursive least squares
We here push further our analysis of the least squares problem discussed in Subsection 3.2.4.

Updating

Typically, when we seek a solution of the problem arg minx ∥Ax − b∥2 where A ∈ Rn×k, we will
not use the SVD as formalized in Subsection 3.2.4. Instead, we will rather first find a factorization

Q⊤[ A |b ] =
[

Rk×k r
0(n−k)×k ρ

]
,
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where R is upper triangular, r ∈ Rk, ρ ∈ Rn−k, and Q ∈ Rk×k is orthogonal. Afterwards, we
reduce our problem to

arg min
x

∥∥∥∥∥
[

Rx− r
ρ

]∥∥∥∥∥
2

= arg min
x
∥Rx− r∥2 (3.16)

Indeed, the latter problem is equivalent to the initial, since the 2-norm is unitarily invariant, and
in this formulation, one does not need to compute the SVD.

If Q̂ ∈ Rn×k is the matrix consisting of the first k columns of Q, then Q̂ is an isometry (i.e.,
Q̂⊤Q̂ = Ik) and Q̂R is the compact QR factorization of A (see Subsection 2.4.3). Then, assuming
rank(A) = k (a hypothesis we will make all along this section), it follows from (3.16) that finding
the least squares solution of Ax = b is equivalent to solving Rx = Q̂⊤b.

Now, in many situations, it happens that we need to resolve the original system augmented
with additional constraints a+x = b+, which are added subsequently (after that a first least squares
solution has been computed). Unfortunately, by combining this new equation, we lose the QR form
that we had obtained. It turns out that one can recover a complete QR form without having to
perform a completely new QR decomposition. Indeed, the new matrix Aup of the augmented
system is almost triangularized by the following orthogonal transformation:[

1
Q̂⊤

]
Aup =

[
1

Q̂⊤

] [
a+
A

]
=
[

a+
R

]
= R+. (3.17)

The matrix R+ is almost triangular since its structure is

R+ =



× × · · · ×
× × · · · ×
× · · · ×

. . . ...
×

 . (3.18)

In order to triangularize R+, it is enough to perform k Givens transformations of rows of R+.
Thus, the triangularization of R+ requires at most

6
k−2∑
j=0

(k − j) = 6
k∑
j=2

j ∼= 3k2 (3.19)

additions/multiplications. Indeed, at step j two rows of length k− j are updated, and the update
of one row takes 3 flops (two multiplications plus one addition).

Windowing

When we want new equations to have a larger influence on the system than the old ones, a common
practice is to use exponential windowing. More precisely, the main idea is to solve the following
problem:

min
x
∥W (Ax− b)∥2 = min

x
∥(WA)x− (Wb)∥2 (3.20)

where
W = diag {λn, λn−1, · · · , λ, 1},

and 0 < λ < 1 is the forgetting factor. For this new system, it is easy to see that if we have already
obtained a triangularization

Q̂⊤[ WA |Wb ] = [ R | r ]
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then we can obtain a QR factorization of the new system by finding Qup such that

Qup

[
λR λr
a+ b+

]
= [ R+ | r+ ] (3.21)

using again k Givens transformations, just as before.

Downdating

We are now interested in a problem inverse to the updating. Let us consider a QR factorization
of the matrix

An×k =
[

a⊤

Â

]
= Q

[
Rk×k

0(n−k)×k

]

where a ∈ Rk, Q ∈ Rn×n is orthogonal and R is upper triangular. We want to find a QR
factorization of Â ∈ R(n−1)×k starting from Q and R.

Let q be the first row of Q and compute Givens rotations G1, . . . , Gn−1 ∈ Rn×n such that

G⊤
1 · · ·G⊤

n−1q⊤ =


1
0
...
0

 .

Note that H = G⊤
1 · · ·G⊤

n−1R is upper Hessenberg, i.e.,

H = G⊤
1 · · ·G⊤

n−1R =

 v⊤

R̂k×k
0(n−k−1)×k


where R̂ is upper triangular, since the Givens rotations Gi involve only consecutive rows from
bottom to top. Also note that

QGn−1 · · ·G1 =
[

1
Q̂

]

where Q̂ ∈ R(n−1)×(n−1) is orthogonal. Finally,

A =
[

a⊤

Â

]
= (QGn−1 · · ·G1)(G⊤

1 · · ·G⊤
n−1R) =

 1
Q̂




v⊤

R̂
0(n−k−1)×k


which gives the desired QR factorization

Â = Q̂

[
R̂

0(n−k−1)×k

]
.

It is not hard to check that the complexity of a “downdate” is 3k2 flops, coinciding with the
complexity of an “update”.
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Sliding window

We are now interested in a system whose solution x ∈ Rk is slightly varying with time. Assume
that at each moment of time, x satisfies a new equation a⊤

i x = bi. As a first approximation, we
can solve the system

Âx̂ = b̂, Â ∈ Rn̂×k, âi: = a⊤
i , b̂i = bi (3.22)

for the first n̂ constraints. This way, we will find an average solution x̂ of the system for the first
k steps. At the (k + 1)st step, we can update the value of x by solving the new system

Ãx̃ = b̃, Ã ∈ Rn̂×k, ãi: = a⊤
i+1, b̃i = bi+1.

Relying on the updating and downdating algorithms we can solve this system in O(k2): the
complexity of the QR factorization of Ã starting from the factorization of Â is the complexity
of an “update” followed by a “downdate”, thus equal to 6k2 flops; the resolution of the modified
triangular system requires around k2 flops.
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Chapter 4

Eigenvalues, eigenvectors and similarity
transformations

In this chapter, we will treat the problem of eigenvalues of a matrix. We will address the similarity
relations and the inherent canonical forms, as well as the computation and approximation of
eigenvalues. We will also introduce the notion of eigenvector and invariant subspace.

The eigenvalue problem plays a central role in matrix theory. It arises in many ordinary or par-
tial differential equations (with constant coefficients) problems, and helps to write the fundamental
solutions for this type of equations.

4.1 Eigenvalues and eigenvectors of matrices
We define an eigenvalue λ ∈ C and the associated eigenvector x ∈ Cn of a matrix A ∈ Cn×n as the
solutions of the equation

Ax = λx, x ̸= 0. (4.1)

This is equivalent to
(λIn − A)x = 0, x ̸= 0,

and allows us to define the eigenvalues λ as the roots of the polynomial

det(λIn − A) = 0.

Now let us consider a transformation T of the space Cn (or Rn) of vectors x:

T x̂ = x, det(T ) ̸= 0.

This transforms equation (4.1) into

T −1AT x̂ := AT x̂ = λx̂,

which leads to the following result:

Lemma 4.1
The eigenvalues of a matrix are invariant under similarity transformations.

65
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Proof. For every invertible matrix T , we have

det(In) = det(T −1T ) = det(T −1) det(T ) = 1.

Hence,
det(λIn − AT ) = det(T −1(λIn − A)T ) = det(λIn − A).

This implies that A and AT have the same eigenvalues.

Since invertible matrices form a multiplicative group, the similarity transformations A 7→
TAT −1 define an equivalence class of matrices and every matrix AT belonging to the similarity
class of A has the same eigenvalues. We may ask whether the eigenvalues are the only invariants
for this class. We will come back on this question later.

First, we restrict ourselves to unitary similarity transformations. This class of transformations
already enables us to reduce every matrix A ∈ Cn×n to a form revealing the eigenvalues of this
matrix. This form is called the Schur form, and is upper triangular with the eigenvalues of A on
the diagonal. We prove below the existence of the Schur form in a constructive way.

Since A ∈ Cn×n, its characteristic polynomial defined by

χ(λ) = det(λIn − A)

has at least one root λ1 in the complex plane. Hence, there exists an eigenvector u1 such that

(λ1In − A)u1 = 0, ∥u1∥2 = 1.

It suffices to complete the vector u1 with an orthonormal basis (given by the columns of some
matrix U⊥

1 ) of its orthogonal complement to get an orthonormal basis of Cn:

U1 =
[

u1

∣∣∣U⊥
1

]
∈ Cn×n, U∗

1 U1 = U1U
∗
1 = In.

If we apply this transformation U1 as a similarity transformation on A, we obtain

Â = U∗
1 AU1 =


λ1 a⊤

1

0
... A2

0

 , (4.2)

because

U∗
1 Au1 =

[
u∗

1
(U⊥

1 )∗

]
u1λ1 =


λ1
0
...
0

 .

We note here that

det(λIn − A) = det(λIn − Â) = (λ− λ1) det(λIn−1 − A2),

where the last identity corresponds to the expansion of λIn − Â in cofactors. Thus, this unitary
similarity transformation isolates a first eigenvalue of A on the diagonal Â, and defines a submatrix
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A2 having as eigenvalues all the other eigenvalues of A. We repeat the same construction with the
matrix A2. This gives

Û∗
2 A2Û2 =


λ2 a⊤

2

0
... A3

0

 . (4.3)

It remains to include (4.3) into (4.2) to obtain

U∗
2 U∗

1 AU1U2 =



λ1 × × · · · ×
0 λ2 × · · · ×
0 0
... ... A3

0 0


where

U2 = diag {1, Û2}.

It is easy to see that a recursive application of this reasoning leads to the following theorem:

Theorem 4.2: Schur
Every matrix A ∈ Cn×n can be upper triangularized under unitary similarity transformations:

U∗AU =


λ1 × · · · ×

λ2
. . . ...
. . . ×

0 λn

 =: AS,

where the diagonal of AS consists of the eigenvalues of A.

Remark 4.1.

1. If A is Hermitian, it is clear that AS has the same property. Hence, AS is diagonal and
real. This form is canonical and shows that the only invariants of a Hermitian matrix under
unitary similarity transformations are its eigenvalues.

2. The eigenvalues in the Schur form can be ordered. For example, we can order them in such a
way that |λi| is decreasing, and for eigenvalues with equal modulus, the phases are decreasing.

3. If A ∈ Rn×n, the eigenvalues and eigenvectors might nonetheless be complex. In this case, it
is not hard to see that the complex conjugates of the eigenvalues and of the eigenvectors are
also eigenvalues and eigenvectors of A.

We would like to find out what is the most general class of matrices that can be diagonalized
under unitary transformations.



68CHAPTER 4. EIGENVALUES, EIGENVECTORS AND SIMILARITY TRANSFORMATIONS

Definition 4.3
A normal matrix is a square matrix A ∈ Cn×n satisfying

AA∗ = A∗A,

i.e., A commutes with its conjugate transpose.

Theorem 4.4
A matrix A ∈ Cn×n is normal if and only if it is diagonalizable under unitary similarity
transformations:

A = UΛU∗, Λ = diag {λ1, . . . , λn}.

Proof. If A is diagonalizable, then it is normal since

(UΛU∗) (UΛU∗)∗ = (UΛU∗)∗ (UΛU∗) .

If A is normal, then U∗AU is normal, hence it suffices to analyze the Schur form AS of A: we want
to show that

ASA∗
S = A∗

SAS (4.4)

implies that AS is diagonal. Therefore, we block-partition AS in the following way:

AS =
 A11 A12

0n2×n1 A22


where Aij has dimensions ni × nj (i = 1, 2, j = 1, 2) and n1 + n2 = n. The block A21 is zero since
AS is upper triangular. Then (4.4) implies

A11A
∗
11 + A12A

∗
12 = A∗

11A11.

Taking the trace, we obtain

trace(A11A
∗
11) + trace(A12A

∗
12) = trace(A∗

11A11)

and since trace(X∗X) = trace(XX∗) = ∥X∥2
F , we have

∥A11∥2
F + ∥A12∥2

F = ∥A11∥2
F .

This implies ∥A12∥F = 0, and thus A12 = 0. Since this is true for every n1 + n2 = n, we conclude
that AS is diagonal.

Let us mention that, in general, the eigenvalues of a normal matrix are complex. If they are
real, it is easy to see that the matrix is Hermitian. The unitary matrices are another subclass
of normal matrices. They have their eigenvalues on the unit circle in the complex plane since
ΛΛ∗ = Λ∗Λ = In.
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4.2 Invariant subspaces

An invariant subspace is a generalization of the concept of eigenvectors, for which an eigenvector
is an invariant space of dimension one.

Definition 4.5
A subset X ⊆ Cn is an invariant subspace under the operator A ∈ Cn×n if

AX ⊆ X .

This implies that the vectors of the space X are mapped into X when we apply on them the
linear transformation A. In other words, the application A leaves X invariant. Typical examples
of invariant subspaces are the spaces generated by the eigenvectors:

X = span {x1, . . . , xi} =⇒ AX = span {Ax1, . . . , Axi} ⊆ span {x1, . . . , xi}

since Axj = λjxj.
However, this kind of invariant subspaces does not include the totality of invariant subspaces,

as illustrated in the following example:

Example 4.1. The matrix

A =

 0 1 0
0 0 1
0 0 0


has only one eigenvalue λ = 0, and only one eigenvector satisfying

(A− 0I)

 1
0
0

 = 0.

However,

A Im

 1 0
0 1
0 0

 ⊆ Im

 1 0
0 1
0 0

 .

Exercise 4.1. Show that the one-dimensional invariant subspaces of a matrix are those generated
by its eigenvectors.

We are now going to establish an important relation between the invariant subspaces and the
triangular forms of a matrix:



70CHAPTER 4. EIGENVALUES, EIGENVECTORS AND SIMILARITY TRANSFORMATIONS

Theorem 4.6

Let X ⊆ Cn be a subspace of dimension k. Let X ∈ Cn×k be such that the columns of X form
a basis of X , and let Xc be a completion of X such that T := [ X |Xc ] is non-singular. Then
the following three propositions are equivalent:

1. AX ⊆ X ;

2. AX = XA11;

3. T −1AT =
 A11 A12

0(n−k)×k A22

;

(where A11 ∈ Ck×k, A12 ∈ Ck×(n−k) and A22 ∈ C(n−k)×(n−k).)

Proof. AX ⊆ X implies that AX contains only linear combinations of the columns of X, i.e., is
equal to XA11. Reversely, AX = XA11 implies that AX = Im(AX) = Im(XA11) ⊆ Im(X) = X .
Hence, the first two points are equivalent. We can rewrite the third point as

AT = T

[
A11 A12

A22

]
, T = [ X |Xc ], (4.5)

implying that AX = XA11. Moreover, AX = XA11 can be rewritten as

AX = [ X |Xc ]
[

A11
0

]

for every matrix Xc. If we choose Xc such that T is invertible, we get equality (4.5) for appropriate
matrices A12 and A22. Hence, the last two points are equivalent.

In the proof above, we have made no assumptions regarding the choice of the basis X and
Xc. It is clear that if those bases are orthonormal, then T is unitary, and thus it is possible to
draw a link with the Schur form. Indeed, if we partition the transformation U in the Schur form
U∗AU = AS in a k-columns matrix U1 and a (n− k)-columns matrix U2, we get

[ U1 |U2 ]∗A [ U1 |U2 ] =
[

A11 A12
A22

]
= AS, A11 ∈ Ck×k, U1 ∈ Cn×k,

then the columns of U1 provide an orthonormal basis of an invariant space of A.
This allows us to define a real-valued version of the Schur form of a matrix A ∈ Rn×n. For

every real eigenvalue λ of A, it is clear that there exists at least one real eigenvector u associated
to λ, since it is a solution to

(A− λIn)u = 0. (4.6)
On the other hand, for a complex eigenvalue λ = α + jβ (β ̸= 0) of A, any associated eigenvector
u = x + jy will be complex. From the equation

[A− (α + jβ)I](x + jy) = 0,

it follows that
A[ x |y ] = [ x |y ]

[
α β
−β α

]
. (4.7)
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Moreover, x, y ∈ Rn must be linearly independent: otherwise, there would exist an angle ϕ such
that sin(ϕ)x + cos(ϕ)y = 0, and thus the eigenvector (x + jy)ejϕ would be real, as well as the
corresponding λ. This allows us to deduce the following lemma:

Lemma 4.7
A square real matrix always admits a real invariant subspace of dimension one or two.

Proof. If A has a real eigenvalue, then we refer to (4.6) to obtain X = span {u}. If A has a
complex eigenvalue α + jβ, we refer to (4.7) to obtain X = span {x, y} which is an invariant
subspace according to Theorem 4.6.

For every invariant subspace, there exists, according to Theorem 4.6, a transformation U1 which
we choose real and orthogonal and such that

U⊤
1 AU1 =

[
A11 A12

A22

]

where A11 is of size 1× 1 or 2× 2, depending on the case. By induction, we obtain the following
theorem:

Theorem 4.8: Real Schur form
Every real matrix A ∈ Rn×n can be almost triangularized under real orthogonal similarity
transformations U ∈ Rn×n, and with blocks of dimensions 1× 1 or 2× 2 on its diagonal:

U⊤AU =


A11 × · · · ×

A22
. . . ...
. . . ×

Akk

 , Aii ∈ R1×1 ∪ R2×2.

Exercise 4.2. Show that if A ∈ Rn×n satisfies A⊤A = AA⊤ (i.e., A is normal), then its real Schur
form is block-diagonal with blocks

Aii = αi or Ajj =
[

αj βj
−βj αj

]

for each real eigenvalue αi and each complex eigenvalue αj ± jβj.

Exercise 4.3. If A ∈ Rn×n is anti-symmetric (i.e., A = −A⊤), then the real Schur form is
block-diagonal with blocks

Aii = 0 or Ajj =
[

0 βj
−βj 0

]
.
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4.3 Generalized eigenvalue problem
We now analyze the generalized eigenvalue problem and the related Schur decomposition. The
motivation of this generalization is to study implicit differential equations. The simplest form of
such equations is

Bẋ(t) = Ax(t) + f(t), x(0) := x0.

We find this kind of differential equations for example in electrical circuit models obtained from
kirchhoff’s laws. The schema of the circuit represented in Figure 4.1 gives rise in the frequency
domain (using Laplace transform) to the system of equations

(sB − A)x(s) = f(s)

where

A =



0 0 0 −1 0 0 1
0 0 0 1 −1 0 0
0 0 0 0 1 −1 0
1 −1 0 −1 0 0 0
0 1 −1 0 −1 0 0
0 0 1 0 0 −1 0
−1 0 0 0 0 0 −1


, B =



C1 0 0 0 0 0 0
0 C2 0 0 0 0 0
0 0 C3 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


and

x(s) = [ x1(s) | . . . |xk(s) ]⊤, f(s) = [ 0 | . . . | 0 | − e(s) ]⊤.

−
+e C1 C2 C3

Figure 4.1: Electrical circuit with four resistances of 1 Ω and three capacitors.

When B is invertible, this implicit system can be reduced to an explicit system:

ẋ(t) = B−1Ax(t) + B−1f(t), x(0) := x0.

The proper frequencies of this system are thus the eigenvalues of the matrix B−1A, but they are
also the roots of the following polynomial

χ(s) := det(sB − A)

since χ(s) = det(B) det(sI −B−1A). Instead of computing the eigenvalues of B−1A by computing
its Schur form, we derive the generalized Schur form as explained in the following theorem:



4.4. JORDAN CANONICAL FORM 73

Theorem 4.9
Every pair of complex matrices A, B ∈ Cn×n admits a triangularization under unitary trans-
formations Q, Z ∈ Cn×n:

Q∗(sB − A)Z = sBS − AS

where AS = [αij] and BS = [βij] are upper triangular. If χ(s) is not identically zero, then the
roots of χ(s) are the quotients αii/βii for every βii ̸= 0.

Proof. When B is invertible, the proof follows from the complex Schur form MS of M := B−1A,
i.e., MS = U∗MU with MS upper triangular. Let Z := U and Q be such that BS := Q∗BZ
is upper triangular (i.e., QBS is a QR decomposition of BZ), and define AS := Q∗AZ. Then
B−1
S AS = (Q∗BZ)−1(Q∗AZ) = Z∗B−1AZ = MS is upper triangular. Hence, AS = BSMS is upper

triangular as well.
When B is not invertible, we choose an infinitesimal perturbation Bϵ and we compute the

unitary matrices Qϵ and Zϵ. Taking the limit of ϵ → 0, the matrices Qϵ and Zϵ must converge
toward unitary matrices since this is a compact set.

Moreover, the roots of det(sB − A) are the roots of det(sBS − AS) and thus the roots of the
polynomials sβii − αii, i = 1, . . . , n. When βii ̸= 0, this gives rise to roots equal to αii/βii.

If det(B) = 0, the polynomial χ(s) := det(sB−A) has less than n finite roots. By a perturbation
argument similar to the one used in the proof above, we observe that some roots are in fact infinite.
For electrical circuits, this corresponds to short circuits.

Remark 4.2. There also exists a real-valued version to the generalized Schur form, where BS and
AS are block upper triangular with 1× 1 or 2× 2 diagonal blocks.

4.4 Jordan canonical form
In this section, we show how to obtain the Jordan form of a matrix A ∈ Cn×n under similarity
transformations T −1AT . This form is a canonical form, as we will see later. The proof of the
theorem is constructive and starts with a block-diagonal form:

Theorem 4.10
Every matrix A ∈ Cn×n admits a block-diagonal form under similarity transformations:

T −1AT = AS = diag {A11, . . . , Akk} (4.8)

where each block Aii has only one eigenvalue (possibly with multiplicity larger than 1).

Proof. The proof is by induction on the dimension n of A. The case n = 1 is trivial. Assume that
for every m < n and A ∈ Cm×m, (4.8) holds.

Now let A ∈ Cn×n and let λ be an eigenvalue of A. For each k ∈ {1, 2, . . .}, let Xk = Ker((A−
λI)k). Clearly, X1 ⊆ X2 ⊆ X3 ⊆ . . . and dim(X1) ≤ dim(X2) ≤ dim(X3) ≤ . . . ≤ n. Hence, there
is an ℓ such that dim(Xℓ) = dim(Xk) for every k ≥ ℓ. Thus, Ker((A− λI)ℓ) = Ker((A− λI)k) for
every k ≥ ℓ.
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We will show that
Cn = Ker((A− λI)ℓ)⊕ Im((A− λI)ℓ). (4.9)

From Theorem 2.4, dim(Ker((A−λI)ℓ))+dim(Im((A−λI)ℓ)) = n. Hence, it suffices to show that
Ker((A − λI)ℓ) ∩ Im((A − λI)ℓ) = {0}. Therefore, let x be in the intersection Ker((A − λI)ℓ) ∩
Im((A−λI)ℓ). Then x = (A−λI)ℓv for some v ∈ Cn. Since (A−λI)ℓx = 0, v ∈ Ker((A−λI)2ℓ) =
Ker((A− λI)ℓ) by definition of ℓ. Hence, x = (A− λI)ℓv = 0. This proves (4.9).

Now, observe that Ker((A− λI)ℓ) and Im((A− λI)ℓ) are both invariant subspaces for A, since
A commutes with (A− λI)ℓ. Hence, if we let the columns of X be a basis of Ker((A− λI)ℓ) and
the columns of Y be a basis of Im((A− λI)ℓ) and we define T = [ X |Y ], we have

T −1AT =
[

A11
A22

]
.

The block A11 cannot have another eigenvalue than λ: otherwise, there would exist an eigenvector
of A: x ∈ Ker((A− λI)ℓ) associated to the eigenvalue µ ̸= λ. Then (A− λI)ℓx = (µ− λ)ℓx ̸= 0,
a contradiction with x ∈ Ker((A − λI)ℓ). Finally, we use the induction hypothesis to block-
diagonalize A22 which has dimension strictly smaller than n.

Lemma 4.11
Every matrix A ∈ Cn×n satisfying (A − λIn)n = 0 for some λ ∈ C can be transformed by
similarity transformations into a block-diagonal form:

T −1AT = diag {J1(λ), . . . , Jk(λ)}

where each Ji(λ) ∈ Cni×ni is a Jordan block:

Ji(λ) =



λ 1
λ 1

. . . . . .
λ 1

λ

 . (4.10)

Proof. The proof is constructive. By considering A−λIn instead of A if necessary, we may assume
without loss of generality that λ = 0. Let ℓ be the smallest positive integer such that Ker(Aℓ) = Cn.
Choose vectors x0,1, . . . , x0,n0 ∈ Ker(Aℓ) such that V0 := {x0,1, . . . , x0,n0} is linearly independent
and

Cn = Ker(Aℓ−1)⊕ spanV0 (4.11)
is in direct sum.

We will show that AV0 is linearly independent and

Ker(Aℓ−2) ∩ span AV0 = {0}.

Indeed, let y ∈ Ker(Aℓ−2) and α1, . . . , αn0 ∈ C such that

y +
n0∑
k=1

αkAx0,k = 0.
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We have to show that y = 0 and α1 = . . . = αn0 = 0. Therefore, apply Aℓ−2 on both sides of the
above equation. This gives

n0∑
k=1

αkA
ℓ−1x0,k = 0 =⇒

n0∑
k=1

αkx0,k ∈ Ker(Aℓ−1).

From (4.11) and V0 being linearly independent, this implies that α1 = . . . = αn0 = 0, and thus
y = 0 as well.

Now, let V ′
1 = {x1,1, . . . , x1,n1} ⊆ Ker(Aℓ−1) be a completion (possibly empty) of AV0 such that

V1 := AV0 ∪ V ′
1 is linearly independent and

Ker(Aℓ−1) = Ker(Aℓ−2)⊕ spanV1

is in direct sum. With an argument identical to the above one, we can show that AV1 is linearly
independent and

Ker(Aℓ−3) ∩ span AV1 = {0}.
Doing this recursively for i = 1, . . . , ℓ − 1, we may find sets V ′

i ⊆ Ker(Aℓ−i) such that Vi :=
AVi−1 ∪ V ′

i is linearly independent and
Ker(Aℓ−i) = Ker(Aℓ−i−1)⊕ spanVi.

Obviously, for i = ℓ− 1, we have Ker(A) = spanVℓ−1.
The construction above shows that we may find a basis of Cn given by

{Aℓ−1x0,1, Aℓ−2x0,1, . . . , x0,1} ∪ . . . ∪ {Aℓ−1x0,n0 , Aℓ−2x0,n0 , . . . , x0,n0}
∪ {Aℓ−2x1,1, Aℓ−3x1,1, . . . , x1,1} ∪ . . . ∪ {Aℓ−2x1,n1 , Aℓ−3x1,n1 , . . . , x1,n1}
...
∪ {Axℓ−2,1, xℓ−2,1} ∪ . . . ∪ {Axℓ−2,nℓ−2 , xℓ−2,nℓ−2}
∪ {xℓ−1,1} ∪ . . . ∪ {xℓ−1,nℓ−1}.

If T ∈ Cn×n is the matrix whose columns are given by the above basis, it is not hard to see
that

AT = T diag
{

Jℓ, . . . , Jℓ︸ ︷︷ ︸
n0 times

, Jℓ−1, . . . , Jℓ−1︸ ︷︷ ︸
n1 times

, . . . , J2, . . . , J2︸ ︷︷ ︸
nℓ−2 times

, 0, . . . , 0︸ ︷︷ ︸
nℓ−1 times

}
where Ji = Ji(0) is given by (4.10) with λ = 0.

Theorem 4.12: Jordan canonical form
Every matrix A ∈ Cn×n can be transformed by similarity transformations into a block-diagonal
form, called the Jordan form:

T −1AT = diag {J1(λ1), . . . , Jk(λk)}

where Ji(λ) is given by (4.10).

Proof. Straightforward from Lemma 4.11 applied to the different blocks Aii obtained in Theo-
rem 4.10, which satisfy (Aii − λiI)ℓi = 0 where λi and ℓi are as in (4.9).

The following corollary expresses that the Jordan form is a canonical form under similarity
transformations:
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Corollary 4.13
Two matrices A, B ∈ Cn×n are similar if and only if they have the same Jordan form.

Proof. If they have the same Jordan form, then

T −1
A ATA = J = T −1

B BTB

and clearly, A and B are similar:
A = TAT −1

B BTBT −1
A .

On the other hand, if A = T −1BT , then for every λ ∈ C,

A− λI = T −1(B − λI)T

and more generally for every integer k ≥ 1,

(A− λI)k = T −1(B − λI)kT.

In particular, dim(Ker((A−λI)k)) = dim(Ker((B−λI)k)). Now observe that, for a given eigenvalue
λ of A, the values of ℓ and n0, . . . , nℓ−1 in the proof of Lemma 4.11 are uniquely determined by
dim(Ker((A− λI)k)) for k ≥ 1. This shows that A and B have the same Jordan form.

Remark 4.3. If we restrict ourselves to real similarity transformations for a matrix A ∈ Rn×n,
then we cannot obtain a Jordan form if A has complex eigenvalues. In this case, we can however
obtain a real-valued version of the Jordan form where the diagonal blocks have the following form:

α β
−β α

1 0
0 1
α β
−β α

1 0
0 1
. . . . . .

α β
−β α

1 0
0 1
α β
−β α


for every pair of complex eigenvalues α± jβ.

4.5 Derivative of eigenvalues
In this section, we will analyze the eigenvalues of a matrix depending on a real variable t, i.e., of
the matrix-valued function

A(t) ∈ Cn×n, t ∈ R.

We can show that the eigenvalues of A(t) are differentiable with respect to t when the elements of
A(t) are also differentiable with respect to t, and when the eigenvalues of A(0) are distinct. This
result is based on the following theorem (for a proof, see, e.g., [Kato, 2013]):



4.5. DERIVATIVE OF EIGENVALUES 77

Theorem 4.14
Let A(t) be a complex n × n matrix whose elements aij(t) are C1 functions of t ∈ R, and
let λ0 be an isolated eigenvalue of A(0). Then there exist a neighborhood I0 of t = 0 and a
C1 function λ(t) on I0 such that λ(0) = λ0 and λ(t) is an isolated eigenvalue of A(t). The
right-eigenvector x(t) ∈ Cn×1 and left-eigenvector y(t) ∈ C1×n can be normalized in such a
way that their elements are C1 functions on I0:

A(t)x(t) = x(t)λ(t),
y(t)A(t) = λ(t)y(t).

If, in addition, every eigenvalue of A(0) is isolated, then there exist matrices Λ(t), X(t) and
Y (t) whose elements are C1 functions on a neighborhood I0 of t = 0 such that

Λ(t) = diag {λ1(t), . . . , λn(t)},

Y (t)X(t) = In,

Y (t)A(t)X(t) = Λ(t).

(4.12)

This implies that the columns of X(t) are the right-eigenvectors of A(t), the rows of Y (t) are
the left-eigenvectors of A(t) and those vectors are biorthogonal. Since these matrices are C1 on I,
we can develop them in Taylor series:

A(t) = A0 + tA1 + O(t2),
Λ(t) = Λ0 + tΛ1 + O(t2),
X(t) = X0 + tX1 + O(t2),
Y (t) = Y0 + tY1 + O(t2),

and inject the constant and first-order terms in (4.12), which gives

Y0X0 = In,

Y0A0X0 = Λ0,

Y0X1 + Y1X0 = 0,

Y1A0X0 + Y0A1X0 + Y0A0X1 = Λ1.

Using A0X0 = X0Λ0 and Y0A0 = Λ0Y0, we obtain

Y1X0Λ0 + Y0A1X0 + Λ0Y0X1 = Λ1,

but since the diagonal elements of Y0X1 + Y1X0 are zero, we have that

[Y0A1X0]ii = [Λ1]ii.

Since [Λ1]ii = d
dt

λi(t)
∣∣∣
t=0

, we get a nice formula for this derivative:

d

dt
λi(t)

∣∣∣
t=0

= yiA1xi,

where xi and yi are the right- and left-eigenvectors of the eigenvalue λi(0) of A(0).
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4.6 Computation of the eigenvalues
In this section, we describe the most popular method to compute the eigenvalues of an arbitrary
matrix: the QR algorithm. Instead of presenting the method directly, we prefer to first introduce
the power method, which is one of the oldest methods to compute the largest eigenvalue of a given
matrix.

Let A ∈ Cn×n and suppose that its eigenvalues are distinct. Thus A has n distinct eigenvectors
uniquely defined up to a scalar coefficient (chosen such that the eigenvectors are normalized):

Axi = λxi, ∥xi∥2 = 1.

Also suppose that the eigenvalues have different modulus ordered as follows:

|λ1| > |λ2| > . . . > |λn|.

The power method starts from an arbitrary nonzero vector q(0) on which we apply the following
iterative algorithm:

Algorithm 4.1: Power method

for k = 1, 2, . . . do
z(k) = Aq(k−1);
q(k) = z(k)/∥z(k)∥2;

end

We prove now that the vectors q(k) converge toward x1 up to the multiplication by some phase
(i.e., by eiφ for some φ ∈ R), and thus we also get the corresponding eigenvalue.

Theorem 4.15
If A ∈ Cn×n has n eigenvalues with different modulus

|λ1| > |λ2| > . . . > |λn|,

and corresponding normalized eigenvectors x1, . . . , xn, then Algorithm 4.1 produces vectors
q(k) converging to x1 (up to a phase multiplication):

lim
k→∞

q(k)e
jφk = x1, (4.13)

as long as the vector q(0) has a nonzero component in the direction of x1 (with respect to the
basis {x1, . . . , xn}). Moreover,

lim
k→∞

q∗
(k)Aq(k) = λ1.

Proof. If we decompose q(0) in the basis of eigenvectors {x1, . . . , xn}, i.e.,

q(0) =
n∑
i=1

cixi,
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the assumption on q(0) in the theorem implies that c1 ̸= 0. Hence, we have

Akq(0) =
n∑
i=1

ciλ
k
i xi = c1λ

k
1

x1 +
n∑
i=2

(
λi
λ1

)k
ci
c1

xi

 = c1λ
k
1

x1 + O

∣∣∣∣∣λ2

λ1

∣∣∣∣∣
k


On the other hand, Algorithm 4.1 provides

Akq(0) = q(k)

k∏
i=1
∥z(i)∥2

and thus the vectors x1 and q(k) become more and more parallel when k grows. Since they are
both normalized, it suffices to adjust the phase of q(k) to obtain (4.13). This phase disappears in
the expression q∗

(k)Aq(k), and thus

lim
k→∞

q∗
(k)Aq(k) = x∗

1Ax1 = λ1.

Remark 4.4.

1. A way to avoid the phase ejφk at step k is to choose a particular component of q(k) and x1
to be real positive.

2. The theorem remains true if we impose the less restrictive condition

|λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn| ,

but the proof becomes more technical.

3. The convergence of this algorithm is linear since the error behaves like

∥q(k)e
jφk − x1∥ = O

∣∣∣∣∣λ2

λ1

∣∣∣∣∣
k
 , ∥q∗

(k)Aq(k) − λ1∥ = O

∣∣∣∣∣λ2

λ1

∣∣∣∣∣
k
 .

To be able to compute more than one eigenvalue of a matrix, we first present a simple gen-
eralization of the previous algorithm, which consists in using an orthonormal basis given by the
columns of some matrix Q(0) ∈ Cn×p instead of a vector q(0). If we start from an arbitrary matrix
Z(0) ∈ Cn×p, it suffices to compute a QR factorization of this matrix:

Z(0) = Q(0)R(0)

to get Q(0) whose columns provide an orthonormal basis of Im(Z(0)). This procedure is repeated
iteratively in the following algorithm:

Algorithm 4.2

for k = 1, 2, . . . do
Z(k) = AQ(k−1);
Q(k)R(k) = Z(k);

end

The theorem related to this algorithm is the following:
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Theorem 4.16
If the eigenvalues of A ∈ Cn×n satisfy

|λ1| ≥ . . . ≥ |λp| > |λp+1| ≥ . . . ≥ |λn|,

then for almost every isometry Q(0) ∈ Cn×p (i.e., Q∗
(0)Q(0) = Ip), Algorithm 4.2 produces

isometries Q(k) ∈ Cn×p that converge (up to some unitary transformation U(k) ∈ Cp×p) to
some isometry X1 ∈ Cn×p, whose columns provide an orthonormal basis of the invariant space
associated to the eigenvalues λ1, . . . , λp:

lim
k→∞

Q(k)U(k) = X1. (4.14)

As a consequence,
lim
k→∞

U∗
(k)Q

∗
(k)AQ(k)U(k) = Â11 (4.15)

where the eigenvalues of Â11 are λ1, . . . , λp.

Proof. Let the columns of X1 be an orthonormal basis of the invariant space associated to the
eigenvalues λ1, . . . , λp, and let the columns of X2 be a basis of the invariant space associated to
the eigenvalues λp+1, . . . , λn. Then

A = [ X1 |X2 ]
[

A11
A22

]
[ X1 |X2 ]−1

where the eigenvalues of A11 (resp. A22) are λ1, . . . , λp (resp. λp+1, . . . , λn).
Decompose the columns of Q(0) in the basis defined by X1 and X2:

Q(0) = X1C1 + X2C2, C1 ∈ Cp×p, C2 ∈ C(n−p)×p.

Then for almost every isometry Q(0) ∈ Cn×p, det(C1) ̸= 0 (i.e., C1 is invertible). Hence, we get

AkQ(0) = X1A
k
11C1 + X2A

k
22C2.

On the other hand, Algorithm 4.2 produces the identity

AkQ(0) = Q(k)R(k) · · ·R(1). (4.16)

Letting R̂(k) = R(k) · · ·R(1), this gives

Q(k)R̂(k)C
−1
1 A−k

11 = X1 + X2A
k
22C2C

−1
1 A−k

11 = X1 + E(k), ∥E(k)∥ ∈ O

∣∣∣∣∣λp+1

λp

∣∣∣∣∣
k
 .

From the above equation, we can show that Ũ(k) = R̂(k)C
−1
1 A−k

11 “becomes more and more orthog-
onal”, that is,

lim
k→∞

Ũ∗
(k)Ũ(k) = lim

k→∞
(Q(k)Ũ(k))∗(Q(k)Ũ(k)) = lim

k→∞
(X1 + E(k))∗(X1 + E(k)) = X∗

1 X1 = Ip.
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If we let Ũ(k) = U(k)T(k) be the QR factorization of Ũ(k) with U(k) ∈ Cn×p orthogonal and T(k) ∈ Cp×p

upper triangular with positive diagonal, we find that

lim
k→∞

T ∗
(k)T(k) = lim

k→∞
Ũ∗

(k)Ũ(k) = Ip,

implying that limk→∞ T(k) = Ip because of the upper triangular structure and positive diagonal of
T(k) (can you prove this?). Thus Ũ(k) − U(k) → 0. This implies that

lim
k→∞

Q(k)U(k) = lim
k→∞

Q(k)Ũ(k) = X1,

proving thereby (4.14).

Remark 4.5.

1. We can show that the convergence is also linear in this case.

2. Because we converge to a matrix X1 and a matrix A11, we do not always have the eigenval-
ues and the eigenvectors themselves at the termination of the algorithm. Nevertheless, the
reduction of the n× n problem to a p× p problem is already considered as a partial solution.

We now have at our disposal all the necessary tools for describing the QR algorithm (aka. QR
Francis’ algorithm) [Francis, 1961]. We assume that the eigenvalues of A have different modulus
and are ordered in the following way:

|λ1| > |λ2| > . . . > |λn|.

We start from a similarity transformation, given by the unitary matrix Q0 ∈ Cn×n (that we do not
specify for the moment), and build the following algorithm:

Algorithm 4.3: QR algorithm

A0 = Q∗
0AQ0;

for k = 1, 2, . . . do
QkRk = Ak−1; (QR factorization of Ak−1)
Ak = RkQk;

end

At each step, we compute the QR factorization of an n × n matrix Ak−1, and we construct
the new matrix Ak as the product of the factor matrices R and Q, in the reverse order of the
factorization. To emphasize the link with Algorithm 4.2, we observe that each matrix Ak is similar
to the previous matrix Ak−1:

Ak = Q∗
k(QkRk)Qk = Q∗

kAk−1Qk,

and thus they have the same eigenvalues.
By induction, we also have that

Ak = Q∗
k · · ·Q∗

0 A Q0 · · ·Qk.
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Moreover,

Ak
0 = (Q1R1)k = Q1(R1Q1)k−1R1 = Q1A

k−1
1 R1 = (Q1 · · ·Qk) (Rk · · ·R1)

where the last identity is obtained by induction on k. Finally, from A0 = Q∗
0AQ0, we deduce that

AkQ0 = (Q0 · · ·Qk) (Rk · · ·R1). (4.17)

This identity reminds us (4.16). This link allows us to demonstrate the following theorem:

Theorem 4.17
The QR algorithm applied on a matrix A ∈ Cn×n whose eigenvalues have different modulus
converges to an upper triangular form:

lim
k→∞

Ak =


λ1 · · · ×

. . . ...
λn

 = AS

whose diagonal consists of the eigenvalues of A ordered with decreasing modulus.

Proof. We give only a sketch of the proof. For the details, we refer the reader to [Wilkinson, 1965].
We multiply equation (4.17) with the matrix

[
Ip

0

]
to obtain

AkQ(0) = Q(k)R(k) (4.18)

where

Q(0) = Q0

[
Ip
0

]
, Q(k) = Q0 · · ·Qk

[
Ip
0

]
, R(k) =

[
Ip 0

]
Rk · · ·R1

[
Ip
0

]
.

Indeed, the multiplication of the upper triangular matrices with
[
Ip

0

]
provides

Rk · · ·R1

[
Ip
0

]
=
[

Ip
0

] [
Ip 0

]
Rk · · ·R1

[
Ip
0

]
.

The equation (4.18) has now the same form as (4.16), and thus we get that Q(k) converges to an
orthonormal basis of the invariant subspace corresponding to the first p eigenvalues of the matrix
A. This is equivalent to saying that

[
Ip

0

]
is an invariant subspace of Ak = Q∗

k · · ·Q∗
0 A Q0 · · ·Qk for

k →∞, or even that Ak converges to a matrix with the following form:

Ak −→
[

A11 A12
A22

]

where the eigenvalues of A11 ∈ Cp×p are the leading p eigenvalues of A. Since this is true for every
p, we have proved the theorem.

The convergence rate of this algorithm is linear (in the number of steps k), and each step
requires O(n3) arithmetic operations, which is rather expensive. A way to significantly lower the
cost of each step is to reduce the initial matrix A0 to a condensed form that will be preserved
throughout the QR algorithm.
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Lemma 4.18: Hessenberg
It is always possible to compute a unitary matrix Q0 such that Q∗

0AQ0 is a Hessenberg matrix,
i.e., Q∗

0AQ0 has the form

Q∗
0AQ0 = AH =


× · · · · · · ×
× . . . ...

. . . . . . ...
× ×

 .

Proof. We build this Hessenberg matrix AH with n − 2 Householder transformations. Let Ĥ1 be
a Householder transformation such that

Ĥ∗
1


a21
a31...
an1

 =


×
0
...
0

 .

Then

H∗
1 AH1 =



a11 × · · · ×
× × · · · ×
0 × · · · ×
... ... ...
0 × · · · ×

 =: A1

where H1 = diag {1, Ĥ1}. We then apply a similarity transformation H2 = diag {I2, Ĥ2} to the
matrix A1 that will preserve (because of the structure of H2) the zeros in the first column of A1.
Moreover, we choose

Ĥ∗
2


a

(1)
32

a
(1)
42...

a
(1)
n1

 =


×
0
...
0

 ,

implying that

H∗
2 H∗

1 AH1H2 = H∗
2 A1H2 =



× × × · · · ×
× × × · · · ×
0 × × · · · ×
0 0 × · · · ×
... ... ... ...
0 0 × · · · ×


.

By induction, we finally obtain the desired form:

H∗
n−2 · · ·H∗

1 A H1 · · ·Hn−2 = Q∗
0AQ0 =


× · · · · · · ×
× . . . ...

. . . . . . ...
× ×

 .
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The complexity of this algorithm is in O(n3) [Golub and Van Loan, 2012], and this algorithm
needs to be carried out only once. We now demonstrate that the Hessenberg form is preserved by
the QR algorithm, lowering therefore significantly its complexity:

Lemma 4.19
The QR factorization AH = QR of a Hessenberg matrix AH ∈ Cn×n can be computed with
n− 1 Givens transformations. Moreover, the product RQ is again a Hessenberg matrix.

Proof. It suffices to use an appropriate Givens transformation between the first and second rows
of AH to get a zero at position (2, 1):

G1,2



× × × · · · ×
× × × · · · ×
× × · · · ×

. . . . . . ...
× ×

 =



× × × · · · ×
0 × × · · · ×
× × · · · ×

. . . . . . ...
× ×

 .

Then it suffices to transform the second and third rows to introduce a zero at position (3, 2), and
so on. This is sketched in the following equation:

Gn−1,n · · ·G1,2 AH = Gn−1,n · · ·G1,2



× × × · · · ×
× × × · · · ×
× × · · · ×

. . . . . . ...
× ×

 =



× × × · · · ×
0 × × · · · ×

0 × · · · ×
. . . . . . ...

0 ×

 ,

Hence, we have
AH = QR, Q = G∗

1,2 · · ·G∗
n−1,n.

Moreover, the product RQ is again a Hessenberg matrix since

× × × · · · ×
0∗ × × · · · ×

0∗ × · · · ×
. . . . . . ...

0∗ ×

G∗
1,2 · · ·G∗

n−1,n =



× × × · · · ×
× × × · · · ×
× × · · · ×

. . . . . . ...
× ×


“refills” the elements 0∗, as sketched above.

At step i, applying the Givens transformation Gi,i+1 on the Hessenberg matrix updates two
rows of length n−i+1, and updating one row takes 3 flops (two multiplications plus one addition).
Then the complexity is 6(n − i + 1) operations. The application of G∗

i,i+1 for the computation of
Q takes the same number of flops 6(n− i + 1). In total, this gives

2
n−1∑
i=1

6(n− i + 1) = 12
n∑
i=2

i ≈ 6n2 operations.

This lowers thus the complexity of the base step of the QR algorithm from O(n3) to O(n2).
Another technique which brings a significant speed-up of the QR algorithm is the incorporation

of shifts. Before explaining its effect, we give a formal description:
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Algorithm 4.4: QR algorithm with shift

A0 = Q∗
0AQ0; (Hessenberg)

for k = 1, 2, . . . do
QkRk = Ak−1− λ̂kI; (QR factorization of Ak−1− λ̂kI)
Ak = RkQk + λ̂kI;

end

where the shifts λ̂k are computed at each step.
We first notice that the generated matrices Ak are still similar to each other:

Q∗
kAk−1Qk = RkQk + λ̂kI = Ak,

and the shifts do not affect the Hessenberg form.
What is the purpose of these shifts? Suppose that λ̂ is an estimation of order δ of λn, the

smallest eigenvalue of A. Then the ratio between the shifted eigenvalues

|λ1 − λ̂| ≥ . . . ≥ |λn−1 − λ̂| ≫ |λn − λ̂|

becomes more significant since λn − λ̂ ≈ δ.
We can show [Wilkinson, 1965] that this provides a quadratic rate of convergence to the shifted

QR algorithm, as long as the shifts λ̂k are adapted at each iteration in a specific way (not presented
here). In very few steps, we will then converge to a matrix with the form

× × · · · × ×
× × · · · × ×

. . . . . . ... ...
× × ×

0 λn


and we restart the algorithm with the remaining (upper left) (n− 1)× (n− 1) submatrix, which is
still Hessenberg. The total complexity of this algorithm is typically 15n3 operations to compute all
the eigenvalues of an arbitrary n×n matrix. This result is quite surprising since the multiplication
of two arbitrary matrices already requires 2n3 operations.

Remark 4.6.

1. If a matrix is Hermitian, then the Hessenberg form is automatically tridiagonal.

2. A matrix of the type A∗A is always Hermitian, and its eigenvalues are the squared singular
values of A. The tridiagonalization of A∗A can be computed implicitly by bidiagonalizing (see
Golub-Kahan-Lanczos bidiagonalization procedure, not presented here) the matrix A:

× ×
× ×

. . . . . .
× ×
×

 = ABi = U∗
0 AV0.
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Hence this implies that
A∗
BiABi = V ∗

0 A∗AV0

is tridiagonal. This trick leads to an efficient QR-like algorithm for computing the singular
values of an arbitrary matrix. The complexity of this algorithm is also in O(n3); see, e.g.,
[Golub and Van Loan, 2012].

3. For a real matrix, it is possible to define a QR algorithm without dealing with any complex
numbers. It suffices to implicitly compute a QR step of the following matrix product:

(A− λiI)(A− λ̄iI) = A2 − (λi + λ̄i)A + λiλ̄iI

which is clearly a real matrix. For the details, we refer to [Golub and Van Loan, 2012].

4.7 Estimation of the eigenvalues
In this section, we present different methods for estimating the eigenvalues of a given matrix.
All these methods have the advantage of not requiring the computation of a form revealing the
eigenvalues (for example the Schur form). Some of these estimation methods are useful in a
framework wider than the simple evaluation of the eigenvalues, for example they are useful for the
study of the convergence of recursive algorithms.

Definition 4.20
The field of values of a matrix A ∈ Cn×n is the set

F(A) :=
{x∗Ax

x∗x

∣∣∣∣x ̸= 0 ∈ Cn
}

.

Theorem 4.21: Hausdorff–Toeplitz
F(A) is a convex compact subset of C and it contains the eigenvalues of A.

Proof. If we rewrite the definition of F(A) as follows:

F(A) := {x∗Ax | ∥x∥2 = 1},

we see that F(A) is the image of a compact set ∥x∥2 = 1 by a continuous function x 7→ x∗Ax and
thus, F(A) is compact. It is also clear that λi(A) ∈ F(A) since for any eigenvector xi, ∥xi∥ = 1,
associated to λi, we have Axi = λixi, and thus x∗

iAxi = λi. Finally, for the proof of the convexity,
we refer the reader to [Horn and Johnson, 1990].

Lemma 4.22
The field of values of a matrix is invariant under unitary similarity transformations:

F(A) = F(U∗AU), U∗U = UU∗ = I.
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Proof. If in the definition
F(A) = {x∗Ax | x∗x = 1},

we let x = Uy, then

F(A) = {y∗U∗AUy | y∗U∗Uy = y∗y = 1} = F(U∗AU).

Corollary 4.23
If A is normal, then F(A) is the convex hull of the eigenvalues of A.

Proof. Let A = U∗ΛU be the (diagonal) Schur form of A. Then

F(A) = F(Λ) =
{∑
|yi|2λi

∣∣∣ ∑|yi|2 = 1
}

=
{∑

θiλi
∣∣∣ θi ≥ 0,

∑
θi = 1

}
where θi = |yi|2.

The Figure 4.2 illustrates the case of a real normal matrix.

Figure 4.2: If A is normal, then F(A) is the convex hull of the eigenvalues of A.

Corollary 4.24
If A is Hermitian, then F(A) is the interval [λmin(A), λmax(A)] on the real line.

For non-normal matrices, F(A) can be much larger than the convex hull of the eigenvalues of A
(in a sense, F(A) can be seen as a measure of the normality of A). A way to evaluate the volume
of F(A) consists in evaluating the extreme values of the real and imaginary parts of the points in
F(A). This is stated formally in the following theorem:
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Theorem 4.25
Let λ ∈ F(A). Then

λmin

(
A + A∗

2

)
≤ ℜ(λ) ≤ λmax

(
A + A∗

2

)
,

λmin

(
A− A∗

2j

)
≤ ℑ(λ) ≤ λmax

(
A− A∗

2j

)
.

(4.19)

These intervals determine the smallest rectangle (in the complex plane) enclosing F(A).

Proof. Let λ ∈ F(A). We can always decompose a matrix A as follows:

A = A + A∗

2 + j
A− A∗

2j
= H1 + jH2

where H1 and H2 are Hermitian. Hence,

λ = x∗Ax = x∗H1x + jx∗H2x = α + jβ

where α and β are real and lie in (4.19). Since it is easy to find a vector x satisfying each extremum,
the rectangle (4.19) is the smallest possible rectangle enclosing F(A).

Corollary 4.26: Bendixon
The eigenvalues of a matrix A ∈ Cn×n lie in the rectangle (4.19).

At first sight, the set F(A) is quite vague, and is thus not very useful to estimate the eigenvalues
of A. However, it plays an important role in the convergence analysis of iterative methods to
compute the eigenvalues of A. Suppose, for example, we have built a matrix

Â = Q∗AQ, Q ∈ Cn×p, Q∗Q = Ip

where Q defines thus an orthonormal basis. What can we tell about the eigenvalues of Â compared
to the eigenvalues of A? It is easy to see that

F(Â) = {x∗Q∗AQx | x∗x = 1}.

If we set y = Qx, then

F(Â) = {y∗Ay | y∗y = 1, y ∈ Im(Q)} ⊆ F(A).

Hence, we have that λi(Â) ∈ F(A). If we apply this to the matrices Âk := Q∗
(k)AQ(k) of Algo-

rithm 4.2 or to the matrices Âk := [ Ip 0 ] Ak

[
Ip

0

]
of Algorithm 4.3, then we know that the values

Âk converge to a subset of the values of A, and never leave the set F(A).
For a normal (or Hermitian) matrix, the convergence is monotone toward the exterior, that is,

it converges to the vertices of F(A).
For arbitrary matrices, the convergence is not monotone anymore but the approximations

λi(Âk) never leave the set F(A). The field of values F(A) plays a similar role in the convergence
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analysis of iterative methods for the solutions of linear systems, and in the stability analysis of
dynamical systems.

Another method for locating the eigenvalues of a matrix is to use the Geršgorin disks. To
introduce this method, we define the radii

rp =
∑
k ̸=p
|apk|.

Theorem 4.27
Let A ∈ Cn×n. Then the eigenvalues of A lie in the union of the Geršgorin disks:

|z − app| ≤ rp. (4.20)

Proof. Let λ be an eigenvalue of A and let xk be the components of a nonzero eigenvector x
associated to λ. Then

n∑
k=1

ajkxk = λxj, 1 ≤ j ≤ n.

Let p be the index of a maximal element of x:

|xp| = max
j
|xj|,

Then we have the inequality

|λ− app| |xp| =
∣∣∣∑
k ̸=p

apkxk
∣∣∣ ≤ |xp| ∑

k ̸=p
|apk|.

Hence we can write
|λ− app| ≤ rp

because xp ̸= 0. This is valid for each eigenvalue. We can thus conclude that the eigenvalues will
be in the union of the Geršgorin disks (4.20).

Remark 4.7.

1. In general, the Geršgorin disks are not disjoint. If they are, then we can show that each disk
contains one and only one eigenvalue [Lancaster and Tismenetsky, 1985].

2. The same theorem applies to the matrix A⊤. The corresponding disks have the same centers
but different radii. The choice of A or A⊤ can improve the localization of the eigenvalues.

3. A diagonal scaling DAD−1 is easy to compute and can also significantly reduce the radius of
the disks, without changing their center.
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4.8 Estimation of the eigenvalues of a Hermitian matrix
For Hermitian matrices, we can expect more accurate bounds and properties than for arbitrary
matrices. For example, we have already shown that the field of values reduces to an interval
of the real line. But since the eigenvalues of a Hermitian matrix are stationary points of the
Rayleigh quotient, we can probably go further. Therefore, we introduce the concept of constrained
eigenvalues.

First of all, let us consider the constrained Rayleigh quotient:

RX
A (x) = x∗Ax

x∗x
, x ̸= 0 ∈ X (4.21)

where X ⊆ Cn is a subspace of dimension n − r (i.e., we impose r constraints). If Q ∈ Cn×(n−r)

provides an orthonormal basis of this space, i.e., X = Im(Q) and Q∗Q = In−r, then

RQ
A(x) = x∗Ax

x∗x
= y∗Q∗AQy

y∗y
= RQ∗AQ(y).

This leads us to the following definition:

Definition 4.28
The constrained eigenvalues of a Hermitian matrix A ∈ Cn×n on a subspace X ⊆ Cn are
defined as the eigenvalues of Â = Q∗AQ where the columns of Q provide an orthonormal
basis of X .

The matrix Â = Q∗AQ is often called the restriction of A to the subspace Im(Q).

Theorem 4.29
Let {λ1, . . . , λn} and {µ1, . . . , µn−r} be the (ordered with decreasing order) eigenvalues of the
Hermitian matrices A ∈ Cn×n and Â = Q∗AQ respectively, and where Q∗Q = In−r. Then

λi+r ≤ µi ≤ λi , i = 1, . . . , n− r.

Proof. We use the variational properties of the eigenvalues of Hermitian matrices. Let Si denote
a subspace of dimension i. Then, due to Theorem 3.26, we have

µi = max
Si⊆X

min
x ̸=0∈Si

R(x) ≤ max
Si⊆Cn

min
x ̸=0∈Si

R(x) = λi.

To prove the second inequality, it suffices to consider the matrices −A and −Â = Q∗(−A)Q. Since
the order of the eigenvalues is reversed and becomes {−λn, . . . ,−λ1} and {−µn−r, . . . ,−µ1}, we
obtain in the same way: −λi+r ≥ −µi.

Corollary 4.30

Let Â be obtained from the Hermitian matrix A ∈ Cn×n by removing one row and the
corresponding column of A. Then the (ordered) eigenvalues {λ1, . . . , λn} and {µ1, . . . , µn−1}
of A and Â are interlacing:

λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ . . . ≥ µn−1 ≥ λn.
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Proof. The proof (trivial) is left to the reader.

An important application of this theorem arises in the case of tridiagonal matrices (see also
Exercise 1.20):

Exercise 4.4. The orthogonal polynomials defined by the recurrence
p0(λ) = 1,
p1(λ) = λ− α1,
pi(λ) = (λ− αi)pi−1(λ)− β2

i pi−2(λ), i = 2, . . . , n,

are the characteristic polynomials of the matrices

Ti =


α1 β2

β2 α2
. . .

. . . . . . βi
βi αi

 .

Show that the roots of two consecutive polynomials are interlacing. The interweaving is strict if
the βj’s are nonzero.

These last results allow us to study the perturbation of Hermitian matrices.

Theorem 4.31

Let Â = A + ∆ be a perturbed n × n Hermitian matrix. If the ordered eigenvalues of A, ∆
and Â are respectively {λ1, . . . , λn}, {δ1, . . . , δn} and {µ1, . . . , µn}, then

µr+s−1 ≤ λr + δs, r + s− 1 ≤ n.

Proof. Clearly, we have
RÂ(x) = RA(x) + R∆(x).

Let Ŝj(H) be the subspace spanned by the j eigenvectors corresponding to the first j eigenvalues
of a Hermitian matrix H. Then we define the subspace X as follows:

X = [Ŝr−1(A) + Ŝs−1(∆)]⊥ = Ŝ⊥
r−1(A) ∩ Ŝ⊥

s−1(∆).

The dimension of this space is at least equal to n′ = n− (r + s− 2). We can write

min
Sn′

max
x ̸=0∈Sn′

RÂ(x) ≤ max
x ̸=0∈X

[RA(x) + R∆(x)]

≤ max
x ̸=0∈Ŝ⊥

r−1(A)
RA(x) + max

x ̸=0∈Ŝ⊥
s−1(∆)

R∆(x)

and thus, by Theorem 3.26, we get µr+s−1 ≤ λr + δs.
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Corollary 4.32
If ∆ is a small perturbation of the matrix A ∈ Cn×n, we have

λk + δn ≤ µk ≤ λk + δ1 , 1 ≤ k ≤ n.

Proof. It suffices to apply the previous theorem to the matrices Â = A + ∆ and A = Â−∆ with
r = k and s = 1.

This corollary is particularly useful for perturbations with small norm ∥∆∥ = δ. Since |δi| ≤
∥∆∥, we have that

λk − ∥∆∥ ≤ µk ≤ λk + ∥∆∥,

which shows that the eigenvalues of a Hermitian matrix are shifted in the worst case with a shift
equal the norm of the perturbation.

Exercise 4.5. If M̂m×n is the matrix Mm×n in which we have replaced a row mi: with a row of
zeros, then the singular values {σ1, . . . , σn} and {σ̂1, . . . , σ̂n} of M and M̂ satisfy

σ2
k − ∥mi:∥2

2 ≤ σ̂2
k ≤ σ2

k.

Hint. It suffices to apply the previous theorem to the identity

M̂⊤M̂ = M⊤M −m⊤
i: mi:.

4.9 Functions of matrices
Let

p(λ) = p0 + p1λ + . . . + pdλ
d

be a polynomial with real or complex coefficients (i.e., p ∈ R[λ] or p ∈ C[λ]). Then for every
matrix A ∈ Cn×n, we can define the polynomial of this matrix as follows

p(A) := p0I + p1A + . . . + pdA
d.

In this section, we analyze the eigenvalues of this kind of matrix functions.

Theorem 4.33
Let A = TJT −1 be a Jordan decomposition of A ∈ Cn×n, then

p(A) = Tp(J)T −1

and thus
λi
(
p(A)

)
= p

(
λi(A)

)
.
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Proof. It suffices to take the powers of A, Ak = TJkT −1:

p(A) = p0I + p1TJT −1 + . . . + pdTJdT −1 = Tp(J)T −1.

Since p(J) is upper triangular, the diagonal elements give the eigenvalues λi
(
p(A)

)
.

What could we tell further? Since p(J) is block-diagonal, with the same structure as J , we can
limit ourselves to the evaluation of the polynomial of a single Jordan block. We consider thus

A = Jk(λ0) =


λ0 1

λ0
. . .
. . . 1

λ0


with size k × k, and we consider a simple example of polynomial: λd.

Lemma 4.34
The dth power of a Jordan block Jk(λ0) gives

[
Jk(λ0)

]d
=



λd0
(
d
1

)
λd−1

0

(
d
2

)
λd−2

0 · · ·
(

d
k−1

)
λd−k+1

0

λd0
(
d
1

)
λd−1

0 · · ·
(

d
k−2

)
λd−k+2

0

. . . . . . ...

λd0
(
d
1

)
λd−1

0

λd0


where (

d

j

)
= d · (d− 1) · · · (d− j + 1)

1 · 2 · · · j .

Proof. The proof is by induction on the exponent d. The case d = 0 is trivial. For the induction
step, observe that

λd0
(
d
1

)
λd−1

0 · · ·
(

d
k−1

)
λd−k+1

0

λd0
. . . ...
. . .

(
d
1

)
λd−1

0

λd0




λ0 1

λ0
. . .
. . . 1

λ0

 =



λd+1
0

(
d+1

1

)
λd0 · · ·

(
d+1
k−1

)
λd−k+2

0

λd+1
0

. . . ...

. . .
(
d+1

1

)
λd0

λd+1
0



For general matrix functions, a result is given by the following theorem:
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Theorem 4.35
Let A ∈ Cn×n. Then, for every analytic function f(λ) = ∑∞

i=0 ai(λ − λ0)i whose radius of
convergence R satisfies that |λi − λ0| < R for every eigenvalue λi of A, the quantity

f(A) =
∞∑
i=0

ai(A− λ0In)i

is well defined.
Moreover, the derivatives f (k)(λi) (1 ≤ k ≤ n− 1) are defined at each eigenvalue λi of A,

and we have that
f(A) = Tf(J)T −1

where
f(J) = diag

{
f
(
Jkij

(λij )
)}

and

f
(
Jk(λ)

)
=



f(λ) f ′(λ)
1!

f (2)(λ)
2! · · · f (k−1)(λ)

(k−1)!

f(λ) f ′(λ)
1! · · · f (k−2)(λ)

(k−2)!

. . . . . . ...

f(λ) f ′(λ)
1!

f(λ)


.

Proof. The proof is based on the Taylor expansion of f(λ) around each eigenvalue λi of A, on some
results concerning interpolation polynomials, and on the polynomial case considered above. For
the details, we refer the reader to [Lancaster and Tismenetsky, 1985].

A straightforward corollary is that, for every analytic function f(λ) with suitable domain of
convergence, the eigenvalues of f(A) are given by

λi
(
f(A)

)
= f

(
λi(A)

)
.

This theorem also allows us to state that there exist polynomials p(λ) for which p(A) is iden-
tically zero. Indeed, consider the characteristic polynomial of A:

χ(λ) = det(λI − A) = det(λIn − J) =
∏

(λ− λi)ki

where

f(J) = diag
{
f
(
Jkij

(λij )
)}

, ki =
ni∑
j=1

kij

and ni is the number of Jordan blocks with eigenvalue λi.
We also consider the minimal polynomial of A:
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Definition 4.36
The minimal polynomial of A ∈ Cn×n is the polynomial

m(λ) =
∏
i

(λ− λi)k
∗
i

where
J = diag

{
Jkij

(λij )
}

, k∗
i = max

1≤j≤ni

kij

and ni is the number of Jordan blocks with eigenvalue λi.

The following theorem is due to Cayley and Hamilton:

Theorem 4.37: Cayley–Hamilton
The characteristic polynomial of A ∈ Cn×n satisfies χ(A) = 0, and the monic polynomial p(λ)
with minimal degree satisfying p(A) = 0 is the minimal polynomial of A.

Proof. It is necessary and sufficient that these two polynomials satisfy χ(k)(λi) = m(k)(λi) = 0 for
every 0 ≤ k ≤ maxj{kij} − 1. It is clear that these conditions are satisfied for χ(A) and m(A),
and also fix the minimal degree of m(λ).

An important matrix function is the exponential function:

eλ =
∞∑
i=0

λi

i!

which converges for every λ ∈ C. We can define eA from the above Taylor expansion

eA =
∞∑
i=0

Ai

i! = T

( ∞∑
i=0

J i

i!

)
T −1.

By Theorem 4.35, we know that eA is well defined for every A ∈ Cn×n. Alternatively, we can see
that this series converges for every A since∥∥∥∥∥

∞∑
i=0

Ai

i!

∥∥∥∥∥ ≤
∞∑
i=0

∥A∥i

i! <∞.

Proposition 4.38
If Q ∈ Cn×n is unitary, then Q = ejH for some Hermitian matrix H ∈ Cn×n.

Proof. A unitary matrix is normal, and thus has a diagonal Schur form:
Q = UΛU∗.

Moreover Λ∗Λ = I so that
Λ = diag {ejφ1 , . . . , ejφn}.

Hence, Λ = ejΦ
Q = UejΦU∗ = ejUΦU∗ = ejH

where H = UΦU∗ is Hermitian.
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Proposition 4.39
If A, B ∈ Cn×n satisfy AB = BA, then eAeB = eA+B.

Proof. The identity for A and B scalar( ∞∑
i=0

Ai

i!

)( ∞∑
i=0

Bi

i!

)
=

∞∑
i=0

(A + B)i
i!

is based on the relation

(A + B)i = Ai +
(

i

1

)
Ai−1B +

(
i

2

)
Ai−2B2 . . . +

(
i

i− 1

)
ABi−1 + Bi.

If A and B are matrices, the identity remains valid as long as A and B commute for the multipli-
cation. Hence the property follows.

Exercise 4.6. Show that
eJk(λ0)t = e(λ0Ikt+Jk(0)t) = eλ0teJk(0)t.

Exercise 4.7. From the Taylor expansion, show that

d
dt

eAt = AeAt = eAtA.

This leads us finally to the application of differential equations:

ẋ(t) = Ax(t) + f(t), (4.22)

where the initial value x(0) is known.
If A admits a diagonal Jordan form

A = TΛT −1,

then it is possible to uncouple equation (4.22) by introducing

x(t) = T x̂(t), f(t) = T f̂(t),

which gives
˙̂x(t) = Λx̂(t) + f̂(t)

where x̂(0) is known. The solution of the uncoupled system is

x̂i(t) = eλitx̂i(0) +
w t

0
eλi(t−τ)f̂i(τ) dτ

for each component x̂i(t) of the vector x̂(t) and each component f̂i(t) of the vector f̂(t).

Exercise 4.8. Show that, in the general case, we have

x(t) = eAtx(0) +
w t

0
eA(t−τ)f(τ) dτ.

Hint. Use the differentiation of the exponential eAt to show that it satisfies equation (4.22).



4.9. FUNCTIONS OF MATRICES 97

This application clearly shows the importance of the Jordan blocks in the characterization of
the type of solutions to (4.22). Indeed, take f(t) = 0 (homogeneous case) and A = Jk(λ0) =
λ0Ik + Jk(0). Then

eJk(0)t = Ik + Jk(0)t
1! + Jk(0)2t2

2! + . . . + Jk(0)k−1tk−1

(k − 1)!

since Jk(0)k = 0 (equation of the characteristic polynomial). Thus, using Exercise 4.6,

eAt = eλ0t

[
Ik + Jk(0)t

1! + Jk(0)2t2

2! + . . . + Jk(0)k−1tk−1

(k − 1)!

]
.

The general solution is thus

x̂(t) = eλ0t

[
x̂(0) + Jk(0)t

1! x̂(0) + Jk(0)2t2

2! x̂(0) + . . . + Jk(0)k−1tk−1

(k − 1)! x̂(0)
]

and we see that the Jordan blocks determine the “polynomial behavior” of the solutions. Those
solutions usually present an overshoot behavior for λ0 stable (see Figure 4.3).

t

x

10

Figure 4.3: Curves: eλ0t (plain), eλ0t(1 + t) (dashed) and eλ0t(1 + t + t2) (dotted) for λ0 = −0.7
and 0 ≤ t ≤ 10. We observe an overshoot behavior.
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Chapter 5

Inertia and stability of matrices

This chapter deals with the localization of the eigenvalues of a given matrix. First, we will study
the sign of the eigenvalues of a Hermitian matrix; afterwards, we will consider the localization of
the eigenvalues of an arbitrary matrix in the complex plane. More specifically, we will be able
to count the number of eigenvalues having positive, zero or negative real part or the number of
eigenvalues with the absolute value smaller, equal or greater than one. Problems of this type are
fundamental for the analysis of stability of dynamical systems.

5.1 Congruences and inertia
In this section, we will introduce a group of transformations that acts on the set of Hermitian
matrices and we will analyze its invariants.

Definition 5.1
Let H1, H2 ∈ Cn×n be Hermitian matrices. We say that H1 and H2 are congruent if there is
an invertible matrix T ∈ Cn×n such that H1 = TH2T

∗.

Observe that a matrix remains Hermitian under congruence transformations. Furthermore,
these transformations form a multiplicative group, since T is invertible and the product of any two
invertible matrices is invertible. Thus, we can ask what are the invariants of a Hermitian matrix
under this group of transformations.

Definition 5.2
The inertia of a Hermitian matrix H is the triple

In(H) = {πH , νH , δH}

where
• πH is the number of positive eigenvalues of H,

• νH is the number of negative eigenvalues of H,

• δH is the number of zero eigenvalues of H,
taking into account the multiplicities of the eigenvalues.

99
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Typically, for a given transformation group, we aim at finding a canonical form that is as
simple as possible. The following theorem brings us closer in this direction in the case of congruent
transformations.

Theorem 5.3
Every Hermitian matrix H ∈ Cn×n is congruent to a diagonal matrix associated with its
inertia: i.e., there is T ∈ Cn×n invertible such that

THT ∗ = diag {IπH
,−IνH

, 0δH
}.

Proof. We start from the Schur form of the matrix H:

H = UΛU∗

where Λ is diagonal and U is unitary. Since U is invertible, the matrices H and Λ are congruent.
We can further assume that the diagonal values of Λ are ordered in the following way: first, all
positive values appear, then all negative values, and finally all zero values, i.e.,

Λ = diag {Λ+, Λ−, Λ0}.

Now it remains to define
T = diag

{
Λ− 1

2
+ , |Λ−|−

1
2 , I

}
U∗

to get the desired result.

Corollary 5.4
If two Hermitian matrices H1 and H2 have the same inertia, then they are congruent.

Proof. If In(H1) = In(H2), then by Theorem 5.3, we conclude that there are invertible transfor-
mations T1 and T2 such that

T1H1T
∗
1 = T2H2T

∗
2 .

It immediately implies that H1 and H2 are congruent.

The following theorem gives the converse of this corollary:

Theorem 5.5
If H1 and H2 are congruent Hermitian matrices, then they have the same inertia.

Proof. By Theorem 5.3, there are invertible transformations T1 and T2 such that

T1H1T
∗
1 = diag {IπH1

,−IνH1
, 0δH1

} (5.1)

and
T2H2T

∗
2 = diag {IπH2

,−IνH2
, 0δH2

} . (5.2)
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The rank of a Hermitian matrix is equal to the number of its nonzero eigenvalues. Furthermore,
the congruence transformations preserve the rank of a matrix, i.e., rank(H1) = rank(H2). Thus,
we have that δH1 = δH2 .

Hence, it suffices to show that πH1 = πH2 . Assume, for a contradiction, that πH1 > πH2 .
Since H1 and H2 are congruent and due to the fact that their diagonal forms are (5.1) and (5.2)
respectively, we obtain  IπH1

−IνH1
0δ

 = R∗

 IπH2
−IνH2

0δ

R (5.3)

for some invertible matrix R and δ = δH1 = δH2 . Let us partition R as

R =
 R11 R12

R21 R22

 ,

where R11 ∈ CπH2 ×πH1 , and choose an appropriate vector

x =
[

x1

0νH1 +δ

]

such that x1 ∈ CπH1 . Note that the product Rx is equal to

y = Rx =
 y1

y2

 , y1 = R11x1 ∈ CπH2 , y2 = R21x1 ∈ CνH2 +δ.

We define y21, y22 such that y2 =
[

y21
y22

]
with y21 ∈ CνH2 and y22 ∈ Cδ.

Since R11 has more columns than rows, we can further assume that x1 is a nonzero vector in
Ker(R11), i.e., y1 = 0. Then, by multiplying (5.3) on the left by x∗ and on the right by x, we
obtain x∗

1x1 = −y∗
21y21 ≤ 0, a contradiction with x1 ̸= 0. If we assume that πH2 > πH1 , then we

will get a similar contradiction with matrices H1 and H2 interchanged.

Corollary 5.6
The diagonal matrix

diag {Iπ,−Iν , 0δ}, π + ν + δ = n,

is a canonical form of a Hermitian matrix H ∈ Cn×n under congruence transformations, and
its inertia In = {π, ν, δ} is the unique invariant under these transformations.

5.2 Cholesky and LDL factorization
To summarize, in the previous section, we have defined the invariants and the canonical form
of a Hermitian matrix under congruence transformations. This canonical form also implies the
existence of a well-known decomposition of positive definite matrices. Let us first recall their
definition:
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Definition 5.7
A Hermitian matrix H is positive definite if for every x ̸= 0,

x∗Hx > 0.

We denote it by H ≻ 0.

All eigenvalues of a positive definite matrix are positive, since

Hx = λx, x ̸= 0,

implies
x∗Hx = λx∗x > 0

and thus λ > 0. Therefore, we can write

H = TT ∗ .

This should be quite familiar, since every positive definite matrix has a Cholesky factorization

H = LL∗,

where L is a lower triangular matrix [Golub and Van Loan, 2012]. Furthermore, this decomposi-
tion can be computed in O(n3) operations and does not require the computation of the eigenvalues
of H. In other words, it is possible to establish that all eigenvalues of a Hermitian matrix are
positive without actually computing them. Immediately, the following natural question arises: is
it possible to find the inertia of a Hermitian matrix without computing its eigenvalues? It will be
the case if we define a symmetric Cholesky-type decomposition for an arbitrary Hermitian matrix;
this is the so-called LDL factorization of a Hermitian matrix:

H = Ldiag {D11, . . . , Dkk}L∗,

where the diagonal blocks Dii have dimensions 1×1 or 2×2. Moreover, the inertia of the 1×1 blocks
is trivial, and the inertia of 2 × 2 blocks is {1, 1, 0} by construction. Thus, this decomposition,
which is merely a generalization of the Cholesky decomposition for arbitrary Hermitian matrices,
indeed allows us to compute the inertia of a Hermitian matrix in a simple manner.

Only a sketch of the algorithm is presented (see Algorithm 5.1). Each time we move to step 2,
we construct a 1× 1 block. Thus, its sign contributes to the inertia. On the other hand, each time
we move to step 3, we build a 2 × 2 block and its inertia is {1, 1, 0}. Indeed, each 2 × 2 block is
Hermitian and its maximal elements are in positions (1, 2) and (2, 1), and thus, its determinant
is negative which implies that this block has one positive eigenvalue and one negative eigenvalue
(see also Proposition 5.9 below). At step 4, only a zero or empty matrix remains, finalizing the
construction.

This algorithm has many variants that try to reduce the number of comparisons to find the
maximum m∗ of the submatrix M . Results of this type and a deeper analysis of this decomposition
can be found, e.g., in [Golub and Van Loan, 2012].

In summary, we have shown that we can compute the inertia of a Hermitian matrix without
computing its eigenvalues. The hardness of this computation is of the order O(n3).
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Algorithm 5.1

Step 0: Set k := 1;
Step 1: Set M := H[k : n, k : n];

Find (m∗, i∗, j∗) := max
i

max
j
|Mij|;

– if m∗ = 0: go to step 4;
– if i∗ ̸= j∗: go to step 3;

Step 2: Permute row i∗ ↔ row 1; Permute column i∗ ↔ column 1;
Eliminate M [2 : n, 1]; Eliminate M [1, 2 : n];
This gives

LPMP ⊤L∗ =


m∗ 0 · · · 0
0 × · · · ×
... ... ...
0 × · · · ×

 .

Set k := k + 1;
– if k < n: go to step 1;
– else: go to step 4;

Step 3: Permute row i∗ ↔ row 1; Permute column i∗ ↔ column 1;
Permute row j∗ ↔ row 2; Permute column j∗ ↔ column 2;
Eliminate M [3 : n, 1 : 2]; Eliminate M [1 : 2, 3 : n];
This gives

LPMP ⊤L∗ =



× m∗ 0 · · · 0
m∗ × 0 · · · 0
0 0 × · · · ×
... ... ... ...
0 0 × · · · ×


.

Set k := k + 2;
– if k < n: go to step 1;
– else: go to step 4;

Step 4: End.
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Theorem 5.8

Algorithm 5.1 computes a decomposition P ⊤HP = LDL∗ of a Hermitian matrix H ∈ Cn×n

in O(n3) operations. The matrix D has diagonal blocks of dimension one or two. In the latter
case, the inertia of these blocks is (1, 1, 0).

The inertia of the 2× 2 blocks can also be deduced from the following result:

Proposition 5.9
Let H be a Hermitian matrix. If the largest (in modulus) entry of H is not on the diagonal,
then H has a negative eigenvalue.

Proof. Suppose that the (i, j)th element is the largest in modulus. Then the vector x = ei − ej
satisfies x∗Hx < 0, which forbids that H is positive definite.

A different approach*

Another approach to count the number of positive, negative and zero eigenvalues of a Hermitian
matrix H ∈ Cn×n is based on the tridiagonal form derived in Lemma 4.18 and Remark 4.6:

UHU∗ =


α1 β2

β2 α2
. . .

. . . . . . βn
βn αn

 =: Tn.

This tridiagonal form is a special case of the Hessenberg form for a Hermitian matrix. Since U
corresponds to a similarity transformation, it is invertible and thus corresponds to a congruence.
It remains to compute the inertia of Tn. The following recurrence allows us to compute the leading
principal minors di = det(T [1 : i, 1 : i]) (1 ≤ i ≤ n) of Tn:

Algorithm 5.2

d0 := 1; d1 := α1;
for i = 1, 2, . . . , n− 1 do

di+1 = αi+1di − β2
i+1di−1;

end

Note that, in contrast with Exercise 4.4, the constants (−1)idi are just the values of character-
istic polynomials pi(λ) of T [1 : i, 1 : i] evaluated at 0:

(−1)idi = pi(0).

The following theorem follows from the properties of Sturm sequences.

Theorem 5.10
The number of sign changes in the sequence {d0, d1, · · · , dn} is equal to the number of eigen-
values of H that are strictly smaller than 0.
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An important asset of this method is that it can be applied to the matrix H − µIn, since

U (H − µIn) U∗ = Tn − µIn

is tridiagonal. By applying Theorem 5.10 to the matrix Tn − µIn, we can compute the number of
the eigenvalues of H that are strictly smaller than µ. As a consequence, we can use the tridiagonal
form Tn to compute the number of eigenvalues in any interval of the real line.

5.3 Stability of dynamical systems

5.3.1 Continuous-time systems and the Lyapunov equation
In this section, we will consider the continuous-time linear system

ẋ(t) = Ax(t), A ∈ Cn×n. (5.4)

The system is stable if there exists a norm such that ∥x(t)∥ is strictly decreasing with time. Let

∥x(t)∥2 = p(x(t)) := x∗(t)Px(t) , with P ≻ 0 ∈ Cn×n. (5.5)

Our requirement that
ṗ(x(t)) < 0 ∀t, ∀x(0), (5.6)

leads to the following condition on the matrix P :

ṗ(x(t)) = ẋ(t)∗Px(t) + x(t)∗P ẋ(t)
= x(t)∗(A∗P + PA)x(t)
= x(t)∗(−Q)x(t).

Since ṗ(x(t)) has to be strictly negative for all t, it implies that Q is a positive definite matrix.
Thus, we arrive at the Lyapunov equation

A∗P + PA = −Q. (5.7)

It implies that if P and Q are positive definite, then A is stable. We now present an algebraic
version of this theorem:

Theorem 5.11
An arbitrary matrix A ∈ Cn×n satisfies (5.7) with P, Q ≻ 0 ∈ Cn×n if and only if ℜ(λi) < 0
for all eigenvalues λi of A.

Proof. First, we prove the “only if” direction. If xi is an eigenvector corresponding to λi, then

−x∗
iQxi = x∗

i (A∗P + PA)xi = x∗
iPxi (λi + λ̄i).

Since x∗
iQxi and x∗

iPxi are strictly positive, we have ℜ(λi) < 0.
Now, we prove the “if” direction. For a given Q ≻ 0, define

P =
w ∞

0
eA∗τQeAτ dτ. (5.8)
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The integral is well defined since the eigenvalues of A have negative real parts, and thus the norm
of eA∗τQeAτ converges exponentially to zero. Moreover, it is clear that P is Hermitian (as the
integral of Hermitian matrices) and P ≻ 0 since each eA∗τQeAτ ≻ 0 by Theorem 5.5 (remember
that eAτ is invertible, with inverse e−Aτ ).

It remains to show that (5.7) holds. Indeed, from Exercise 4.7, we have

A∗P + PA =
w ∞

0
A∗eA∗τQeAτ + eA∗τQeAτA dτ

=
w ∞

0

d
dτ

(eA∗τQeAτ ) dτ =
[
eA∗τQeAτ

]τ→∞

τ=0
= −Q.

Remark 5.1. It is possible to show [Horn and Johnson, 1990] that if A, P, Q ∈ Cn×n satisfy (5.7)
with P Hermitian and Q ≻ 0, then

In(−P ) = In(A),
where In(A) = (i+, i−, i0) are the numbers of eigenvalues of A with positive, negative and zero real
part respectively.

5.3.2 Discrete-time systems and the Stein equation
The discrete-time equivalent of the dynamical system (5.4) is

xk+1 = Axk, A ∈ Cn×n. (5.9)

The system is called stable if the modulus of all eigenvalues of A are smaller than 1. The Stein
equation is the equivalent of the Lyapunov equation:

P − A∗PA = Q, Q ≻ 0. (5.10)

The following theorem analyzes the discrete-time stability of A.

Theorem 5.12
An arbitrary matrix A ∈ Cn×n satisfies (5.10) with P, Q ≻ 0 ∈ Cn×n if and only if |λi| < 1 for
all eigenvalues λi of A.

Proof. To prove the “only if” direction, let xi be an eigenvector corresponding to λi. Then

x∗
iQxi = x∗

i (P − A∗PA)xi = x∗
iPxi (1− λiλ̄i).

Since x∗
iQxi and x∗

iPxi are strictly positive, we have |λi| < 1.
Now, to prove the “if” direction, let Q ≻ 0 be given and define

P =
∞∑
i=0

(A∗)iQAi. (5.11)

With a similar reasoning as in the proof of Theorem 5.11, we can show that the sum above is well
defined and that A, P and Q satisfy (5.10) and P ≻ 0.

Remark 5.2. We can show [Horn and Johnson, 1990] that if A, P, Q ∈ Cn×n satisfy (5.10) with
P Hermitian and Q ≻ 0, then In(P ) is equal to the number of eigenvalues of A whose absolute
value is smaller than, larger than, or equal to 1 respectively.
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5.3.3 Computational aspects
The formulas (5.8) and (5.11) given in the proofs of Theorems 5.11 and 5.12 for the computation
of P are not of great practical interest since they involve an infinite integral and an infinite sum.
To conclude this section, we show how the matrix P can be efficiently computed for a given Q.

First, we note that Lyapunov (5.7) and Stein (5.10) equations are linear in the elements of P . It
might not be immediately clear in their initial form, but if we define vec(P ) as the “vectorization”
of the matrix P , then we can show that vec(P ) satisfies a system of linear equations with the
right-hand side equal to vec(Q). If

vec(P ) :=


P (:, 1)
P (:, 2)

...
P (:, n)

 , vec(Q) :=


Q(:, 1)
Q(:, 2)

...
Q(:, n)

 ,

then we can show that
vec(BPA) = (A⊤ ⊗B)vec(P ).

Actually, we just need to observe that

vec(BPA) =


BPA(:, 1)
BPA(:, 2)

...
BPA(:, n)

 =


B

B
. . .

B




PA(:, 1)
PA(:, 2)

...
PA(:, n)



=


B

B
. . .

B




a11I · · · an1I... ...
... ...

a1nI · · · annI




P (:, 1)
P (:, 2)

...
P (:, n)


= (A⊤ ⊗B) vec(P ).

If we apply this identity to the Lyapunov and Stein equations, we obtain respectively

(In ⊗ A∗ + A⊤ ⊗ In) vec(P ) = −vec(Q) (5.12)

(A⊤ ⊗ A∗ − In2) vec(P ) = −vec(Q) (5.13)

that clearly demonstrate that P can be computed as the solution of a system of linear equations.
At first sight, it seems that we have found a simple way to count the number of stable and

unstable eigenvalues of a dynamical system, without explicitly computing the eigenvalues them-
selves. However, the methods used in practice [Bartels and Stewart, 1972] to solve (5.12) and
(5.13) boil down to the computation of the eigenvalues! Indeed, suppose that A is reduced by
unitary similarity transformations to its Schur form:

U∗AU =


λ1
× λ2
... . . . . . .
× · · · × λn

 =: AS, U∗U = UU∗ = In.
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Note that the lower triangular “Schur” form is essentially equivalent to the upper triangular Schur
form, since it is enough to permute rows and columns to switch from one form to the other one:


1

1
. . .

1




λ1
× λ2
... . . . . . .
× · · · × λn




1
1

. . .

1

 =


λn × · · · ×

. . . . . . ...
λ2 ×

λ1

 ,

that are actually similarity transformations.
If we define the matrices

U∗PU := PS, U∗QU := QS,

then (5.7) and (5.10) become

A∗
SPS + PSAS = −QS,

A∗
SPSAS − PS = −QS.

These equations can be solved in an efficient manner, since the equivalent systems

(In ⊗ A∗
S + A⊤

S ⊗ In) vec(PS) = −vec(QS) (5.14)
(A⊤

S ⊗ A∗
S − In2) vec(PS) = −vec(QS) (5.15)

are upper triangular. It is enough to use substitutions to find the solution. This can be done in
O(n3) operations. Thus, we have avoided the LU factorization of the original systems (5.12) and
(5.13) that would have required a larger number of operations.

In fact, the reduction of the systems (5.12) and (5.13) into a triangular form (5.14) and (5.15)
can be achieved with the unitary similarity transformation

V := U⊤ ⊗ U.

This result is based on the property studied in the Exercise 1.6.

Exercise 5.1. Show that

V ∗ (In ⊗ A∗ + A⊤ ⊗ In) V = In ⊗ A∗
S + A⊤

S ⊗ In

whose eigenvalues are λ̄j + λi (i = 1, . . . , n, j = 1, . . . , n).

Exercise 5.2. Show that

V ∗ (A⊤ ⊗ A∗ − In2) V = A⊤
S ⊗ A∗

S − In2

whose eigenvalues are λ̄jλi − 1 (i = 1, . . . , n, j = 1, . . . , n).

Exercise 5.3. Apply these techniques to Sylvester’s equation

AX + XB = C.
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5.4 Robustness of dynamical systems
In this section, we will study the influence of perturbations of dynamical systems on their stability.
We will be mainly interested whether a perturbation ∆ ∈ Cn×n can make a matrix A ∈ Cn×n

unstable. In the continuous-time case, it implies that ℜ(λi(A + ∆)) ≥ 0; and in the discrete-time
case, that |λi(A + ∆)| ≥ 1.

The following lemma provides a bound on such perturbations:

Lemma 5.13
The smallest norm of a perturbation ∆ such that A + ∆ has an eigenvalue λ∗ satisfies

∥∆∥2 = σmin(A− λ∗I).

Proof. Since λ∗ is the eigenvalue of A + ∆ we conclude that

rank (A + ∆− λ∗I) ≤ n− 1.

Thus, we can interpret ∆ as the smallest perturbation reducing the rank of A − λ∗I. In other
words, A + ∆ − λ∗I is a best approximation of A − λ∗I with rank strictly smaller than n. The
required bound on ∥∆∥2 follows then from Theorem 3.28.

Note that the construction of a minimal-norm perturbation ∆ is given by (3.15).
If we apply Lemma 5.13 to the stability of continuous-time systems, we obtain the following

result:

Theorem 5.14
If A ∈ Cn×n is stable (ℜ(λi) < 0 for all λi) and ∥∆∥2 is bounded by

∥∆∥2 < min
λ∗=jω

σmin(A− λ∗I),

then A + ∆ remains stable.

Proof. Note first that the eigenvalues of a matrix depend continuously on its elements (since they
are roots of the characteristic polynomial), so that the minimum (over λ∗ = jω) exists. The matrix
A + ∆ can not become unstable unless it has an eigenvalue with the real part equal to zero for
a suitable ∆: λ(A + ∆) = jω. However, by Lemma 5.13, we conclude that the norm of such a
destabilizing perturbation ∆ is at least equal to minλ∗=jω σmin(A− λ∗I).

The equivalent result for discrete-time systems is the following theorem:

Theorem 5.15
If A ∈ Cn×n is stable (|λi| < 1 for all λi) and ∥∆∥2 is bounded by

∥∆∥2 < min
λ∗=ejθ

σmin(A− λ∗I),

then A + ∆ remains stable.
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The converses of Theorems 5.14 and 5.15 also hold: if we allow the norm of the perturbation
∆ to be equal to the bounds presented in the above two theorems, then it is possible to find a ∆
that destabilizes the system. Therefore, these bounds are often called the stability radius of the
underlying systems.

Exercise 5.4. Construct perturbations ∆ with ∥∆∥2 equal to one of the bounds presented in The-
orems 5.14 and 5.15 such that A + ∆ is not stable.

It is interesting to note that the function

ν(λ) := σmin(A− λI), λ ∈ C,

is a nonnegative real-valued function in the complex plane. Since the eigenvalues depend contin-
uously on the elements of a matrix, we can conclude that ν(λ) is continuous with respect to λ.
Furthermore, ν(λ∗) = 0 if and only if λ∗ is an eigenvalue of A. The level curves of ν(λ) are called
the pseudospectrum of A. Lemma 5.13 implies that for each point of the complex plane such that
ν(λ∗) = δ, there exists a perturbation ∆ with ∥∆∥2 ≤ δ such that λ∗ is an eigenvalue of A + ∆. It
implies that the interior of the level curve δ is the set

Λδ := {λi(A + ∆) | ∥∆∥2 ≤ δ}.

In other words, it is the set of eigenvalues of perturbed matrices A + ∆, where the perturbations
∆ are bounded by δ. Therefore,

δ1 < δ2 =⇒ Λδ1 ⊊ Λδ2 .

The level curves are contained into each other.

Exercise 5.5. Show that, when δ → ∞, Λδ tends to the disc of radius δ centered at the origin,
i.e., the line curves for δ large become circles of radius δ.

The pseudospectrum can be used to analyze the perturbations of the spectrum of A. For exam-
ple, Theorems 5.14 and 5.15 can be reformulated in terms of the minimum of ν(λ) over λ = jω or
λ = ejθ respectively. We can also study the stability of a system of non-linear differential equations
using the pseudospectrum of its linearization, since nonlinearity can be seen as a perturbation of
the linearization.

We will now present the pseudospectrum of several specific examples in order to demonstrate
that the eigenvalues can change in a rather strange way. For each example, we will present the
pseudospectrum computed with the help of ν(λ), and compute the spectrum of several randomly
perturbed matrices for a fixed δ. Since we consider only real matrices for our examples, the graphs
of the pseudospectra are symmetric with respect to the real axis.

Example 5.1. Consider the Jordan matrix

J32 =



0 1
0 1

. . . . . .
0 1

0

 .
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Figure 5.1: The pseudospectrum of the Jordan matrix

The only eigenvalue of this matrix is 0. As we will see now, this matrix is very sensitive to pertur-
bations. We have computed the line curves of the pseudospectrum (for the values 10−2, . . . , 10−8)
of the Jordan matrix of size 32 (Figure 5.1). We have also computed the spectrum of 100 matrices
of the form J32 + E, where E is a random matrix with ∥E∥2 = 10−2 (Figure 5.2).

By construction, all the points in Figure 5.2 are located in the largest disc of Figure 5.1. We
can see that even a small perturbation of J32 generates a totally different spectrum.

Example 5.2. Consider now a random 16×16 matrix A. The spectrum of A is given in Figure 5.3,
and the level curves (for logarithmically spaced values between 10−3 and 0.5) of its pseudospectrum
is given in Figure 5.4. It is clear from these pictures that the eigenvalues of this matrix are much
less sensitive to perturbations.
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Figure 5.2: Spectra of the perturbations the Jordan matrix

Figure 5.3: Spectrum of the matrix of Example 5.2.
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Figure 5.4: Pseudospectrum of the matrix of Example 5.2.
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Chapter 6

Polynomial matrices

Polynomial matrices are mainly used for their applications in dynamical system theory. Indeed,
if you compute the Laplace transformation of a system of differential equations with constant
coefficients, you obtain an operator acting on a vector of functions. This operator has the form
of a polynomial matrix. The same applies for the z-transform of a system of difference equations
with constant coefficients. A third important application are convolutional codes which resort to
difference equations on finite fields.

A polynomial matrix is a matrix whose entries are polynomials of a variable λ. For example,

P (λ) =
[

λ2 1 + λ
3λ 3

]
.

Equivalently, a polynomial matrix is a polynomial whose coefficients are matrices.

P (λ) = P̄0 + P̄1λ + P̄2λ
2 + . . . + P̄dλ

d .

Note that, in this setting, [P (λ)]i,j are polynomials for all 1 ≤ i ≤ m and 1 ≤ j ≤ n, and P̄k are
m × n matrices for all 0 ≤ k ≤ d. We will denote by Rm×n[λ] the set of m × n matrices whose
elements are polynomials with real coefficients. We may, of course, also consider polynomials with
coefficients in the field of complex numbers. In this case, the set of m × n “complex polynomial
matrices” is denoted by Cm×n[λ].

Because the entries of a polynomial matrix P (λ) do not belong to a field, but rather belong to
a ring (namely, to R[λ] or C[λ]), we will expect to encounter other groups of transformations—and
thus other canonical forms—than for the case of matrices with elements in R or C. For instance,
the key property that any non-singular square matrix is invertible is not true anymore. Indeed, if
P (λ) is a square polynomial matrix with nonzero determinant, the inverse of P (λ) defined by

P −1(λ) = adj(P (λ))/det(P (λ)) (6.1)

is not necessarily a polynomial matrix (although the determinant is a polynomial and the adjugate
matrix is a polynomial matrix). A first natural question is then to find the subclass of polynomial
matrices which have an inverse in the form of a polynomial matrix.

Definition 6.1
A polynomial matrix E(λ) ∈ Cn×n[λ] is unimodular if its determinant is a nonzero constant.

According to (6.1), we observe that every unimodular matrix has a polynomial inverse.

115
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Exercise 6.1. Show that the invertible polynomial matrices are exactly the unimodular matrices.

Hint. Suppose E(λ) and E−1(λ) are both polynomial matrices. Then det(E(λ)) · det(E−1(λ)) =
det(In) = 1. The determinants are inverse of each other and thus are nonzero constants.

Typical examples of unimodular matrices are

E1(λ) =


1 p(λ)

1 q(λ)
1

1

 , E2(λ) =


1

1
0 1
1 0

 , (6.2)

which remind us the elementary transformations of Chapter 1. Note that the scaling of a matrix
by means of a diagonal matrix diag {1, . . . , 1, p(λ), 1, . . . , 1} is not a unimodular transformation.
The group of elementary transformations of polynomial matrices is thus smaller than the one for
real or complex matrices.

Exercise 6.2. Show that the elementary transformations of type 1 and 2 defined in (6.2) applied
on the rows and on the columns of a polynomial matrix define a multiplicative group.

We will show how to obtain a triangular or diagonal form using these transformations.

Theorem 6.2: Euclid–Stevin
For every two polynomials a(λ), b(λ) ∈ C[λ], there exists a unimodular transformation U(λ) ∈
C2×2[λ] such that [

a(λ)
b(λ)

]
= U(λ)

[
d(λ)

0

]
where d(λ) = gcd {a(λ), b(λ)}.

Proof. We perform the polynomial division of a(λ) by b(λ). This gives the quotient q1(λ), and the
residue r1(λ) whose degree is strictly smaller than the degree of b(λ):

a(λ) = b(λ)q1(λ) + r1(λ).

This can be written in terms of a unimodular matrix:[
a(λ)
b(λ)

]
=
[

q1(λ) 1
1 0

] [
b(λ)
r1(λ)

]
, (6.3)

(indeed observe that the determinant equals −1). We repeat the above reasoning for the division

b(λ) = r1(λ)q2(λ) + r2(λ).

This gives [
b(λ)
r1(λ)

]
=
[

q2(λ) 1
1 0

] [
r1(λ)
r2(λ)

]
(6.4)
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which produces a polynomial r2(λ) of degree strictly smaller than the degree of r1(λ). Applying
this procedure recursively, we finally obtain a residue rk(λ) = 0. If we substitute (6.4) into (6.3)
and so on, we get

[
a(λ)
b(λ)

]
=
[

q1(λ) 1
1 0

] [
q2(λ) 1

1 0

]
· · ·

[
qk(λ) 1

1 0

] [
d(λ)

0

]
.

We clearly recognize here the Euclid–Stevin algorithm for computing the greatest common divisor
d(λ) of two polynomials a(λ) and b(λ). Moreover, the product of the above 2 × 2 unimodular
transformations is again unimodular.

Corollary 6.3
For every n polynomials p1(λ), . . . , pn(λ) ∈ C[λ], there exists a unimodular transformation
Q(λ) ∈ Cn×n[λ] such that

Q(λ)


p1(λ)
p2(λ)

...
pn(λ)

 =


d(λ)

0
...
0

 (6.5)

where d(λ) = gcd {p1(λ), . . . , pn(λ)}.

Proof. Using a construction similar to the one described in the proof of the previous theorem,
we can recursively eliminate all the entries pi(λ) (i = 2, . . . , n) with a product of unimodular
transformations. Hence, we have


p1(λ)
p2(λ)

...
pn(λ)

 = U(λ)


d(λ)

0
...
0

 . (6.6)

By inverting U(λ), we get (6.5) since Q(λ) := U−1(λ) is unimodular as well. Considering the first
column of (6.6), we directly see that d(λ) divides all the pi(λ):

pi(λ) = ui1(λ)d(λ).

Moreover, the quotients ui1(λ) have no nontrivial common divisor as otherwise this would be a
nontrivial divisor of det(U(λ)) as well, contradicting that det(U(λ)) is constant. Hence, d(λ) is
the greatest common divisor of the polynomials pi(λ).

The above corollary reminds us the Householder transformations for matrices in Rm×n or Cm×n,
as it allows us to “compress” a vector into a single nonzero element. Henceforth, we can use this
construction recursively to obtain the following result:
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Theorem 6.4: Hermite
Every polynomial matrix P (λ) ∈ Cm×n[λ] can be transformed into a quasi-triangular form

M(λ)P (λ)N =



p1(λ) · · · ×
. . . ...

pr(λ)

× · · · ×
... ...
× · · · ×

0(m−r)×r 0(m−r)×(n−r)


where M(λ) ∈ Cm×m[λ] is unimodular and N ∈ Rn×n is a permutation matrix.

Proof. The proof is constructive and similar to the proof of the QR factorization using Householder
transformations.

A more delicate question is the diagonalization by unimodular transformations. For this pur-
pose, Algorithm 6.1 presented below provides a construction leading to the Smith form of an
arbitrary polynomial matrix Pm×n(λ). This constructive algorithm provides a proof of the Smith
theorem below.

Theorem 6.5: Smith
Every polynomial matrix P (λ) ∈ Cm×n[λ] can be reduced by unimodular transformations
M(λ) ∈ Cm×m[λ] and N(λ) ∈ Cn×n[λ] to a quasi-diagonal form

M(λ)P (λ)N(λ) =


e1(λ) 0

. . .
0 er(λ)

0r×(n−r)

0(m−r)×r 0(m−r)×(n−r)

 (6.7)

where ei(λ) divides ei+1(λ) (i = 1, . . . , r − 1).

Proof. It suffices to observe that the transformations (of the rows and columns) described in
Algorithm 6.1 are unimodular.

Definition 6.6
The normal rank of a polynomial matrix P (λ) ∈ Cm×n[λ] is the order of its largest nonzero
minor.

Because the elementary (unimodular) operations do not affect the order of the largest nonzero
minor of a matrix (cf. Theorem 1.9), it follows that the normal rank is equal to the number r of
nonzero polynomials in the Smith decomposition (6.7).

Exercise 6.3. The normal rank of P (λ) is equal to the rank of P (λ0) for almost every (in the
Lebesgue sense) λ0 ∈ C (or R). When they are not equal, the rank of P (λ0) is smaller than the
normal rank.
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Algorithm 6.1

Step 1: If P (λ) = 0 go to step 5;
Otherwise, permute the nonzero polynomial with minimal degree to
position (1, 1);

Step 2: Apply one step of the Euclid–Stevin algorithm on the elements p1j(λ)
for j = 2, . . . , n and pi1(λ) for i = 2, . . . , m.
Go back to step 1 unless you obtained

M(λ)P (λ)N(λ) =


p11(λ) 0 · · · 0

0 p22(λ) · · · p2n(λ)
... ... ...
0 pm2(λ) · · · pmn(λ)

 (6.8)

where the degree of p11(λ) is smaller or equal to the degree of the
other polynomials;

Step 3: If p11(λ) does not divide all the polynomials pij(λ) for i = 2, . . . , m
and j = 2, . . . , n, then add the jth column, that is not divisible by
p11(λ), to the first column and go back to step 1;

Step 4: Because the degree of p11(λ) can only strictly decrease during steps 2
and 3, we finally obtain (6.8) with the property that p11(λ) divides all
the polynomials of the submatrix P [2 : m, 2 : n].
Set P := P [2 : m, 2 : n], m := m− 1 and n := n− 1;
If m, n ̸= 0, then go back to step 1;

Step 5: End.
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Hint. It suffices to see that M(λ0) and N(λ0) in the Smith decomposition

M(λ0)P (λ0)N(λ0) =
 diag {ei(λ0)} 0

0 0


are invertible. Hence, rank(P (λ0)) = rank(diag {ei(λ0)}), and the latter drops down if and only if
λ0 is a root of one of the polynomials ei(λ).

Let us mention that if P (λ) has full normal rank (i.e., m = n = r), then

det(P (λ)) = c · e1(λ) · · · er(λ).

The roots of the polynomials ei(λ) provide thus important information on the polynomial matrix
P (λ). For systems of differential equations, these roots are the characteristic/resonance frequencies
of the solutions of the homogeneous system of differential equations

P

(
d
dt

)
x(t) = 0.

Remark 6.1.

1. The Smith form (6.7) is a canonical form under the group of unimodular transformations
on the left and on the right. These transformations are called equivalences. Two polynomial
matrices are thus equivalent if and only if they have the same Smith form.

2. The Smith form was first introduced for matrices with integer coefficients. This is another
example of matrices defined on a ring. The “unimodular” transformations in this case are
the matrices whose determinant is invertible in the integers (why?), i.e., whose determinant
is equal to ±1.

To conclude this chapter, we will establish the link between the Smith form and the Jordan
form, which describes the characteristic solutions of a system of differential equations(

d
dt

I − A

)
x(t) = 0.

Because λI − A is a polynomial matrix, it admits a Smith form. What is the link between the
Jordan form of A and the Smith form of λI − A? Without going into the details, we show that
the Smith form of a single Jordan block λI − Jn(α) is diag {1, 1, . . . , 1, (λ − α)n}. Therefore, we
give the unimodular transformations leading to this form

(λ− α)n−1 · · · (λ− α) 1
−1 0 · · · 0

. . . . . . ...
−1 0




(λ− α) −1

(λ− α) . . .
. . . −1

(λ− α)




1

(λ− α) 1
... . . . . . .

(λ− α)n−1 · · · (λ− α) 1



=


(λ− α)n

1
. . .

1

 .
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It remains to apply a permutation to obtain the desired result. We can show that every Jordan
block Jd(α) corresponds in fact to an elementary factor (λ− α)d of the polynomials ei(λ):

ei(λ) = (λ− α1)d
(i)
1 · · · (λ− αk)d

(i)
k .

For more details, we refer the reader to [Lancaster and Tismenetsky, 1985].

Exercise 6.4. Verify that the Smith form of the matrix

λI4 −


1

1
2 1

2


is diag {1, 1, λ− 1, (λ− 1)(λ− 2)2}.



122 CHAPTER 6. POLYNOMIAL MATRICES



Chapter 7

Positive matrices

In this chapter, we study matrices whose entries are positive or nonnegative real numbers. This
type of matrices appears for example:

• in graph theory, where the elements of the matrix can represent the edges (possibly weighted)
between the nodes of a graph (incidence matrix);

• in statistics, where the entries of the matrix can represent the probability of transition from
one state to another (stochastic matrices);

• in economy, where the matrices can represent tables of demands and resources (Leontief
model).

For the simplicity of notation, we will write

A > 0 ⇐⇒ aij > 0 ∀i, ∀j, (7.1)
A ≥ 0 ⇐⇒ aij ≥ 0 ∀i, ∀j. (7.2)
A ⪈ 0 ⇐⇒ A ≥ 0 and A ̸= 0. (7.3)

This should not be mistaken with the concepts of positive definite and positive semidefinite matrices
introduced earlier in the notes, and for which we have used a typographically close notation. Note
that (7.1) and (7.2) also apply to vectors and non-square matrices.

We will see in the following that the eigenvalues and eigenvectors of such matrices are in
general not positive and can even be complex-valued. However, under certain assumptions, there
will always exist a positive eigenvalue whose corresponding eigenvector is positive. This result,
due to Perron and Frobenius, has important implications in many applications. Before stating the
theorem, we need to introduce an important concept:

Definition 7.1
A nonnegative matrix A ≥ 0 ∈ Rn×n is irreducible if there exists no permutation P ∈ Rn×n

such that

PAP ⊤ =
 A11 A12

0(n−n1)×n1 A22

 , A11 ∈ Rn1×n1 , 0 < n1 < n.

123
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Theorem 7.2
Let A ≥ 0 ∈ Rn×n be irreducible. Then

(I + A)n−1 > 0.

Proof. Let y ⪈ 0. Then
z = (I + A)y

is nonnegative and if y is not positive, then the number of positive elements of z is strictly larger
than the number of positive elements of y. Indeed, suppose that all the positive elements of y are
in y1, the upper part of y. Then[

z1
z2

]
=
[

A11 A12
A21 A22

] [
y1
0

]
+
[

y1
0

]
, y1 > 0.

The vector z1 is clearly positive and z2 cannot be zero unless A21 = 0, a contradiction with A
irreducible. If the nonzero elements of y are not gathered in y1, it suffices to perform a symmetric
permutation of A.

If we repeat the above argument n− 1 times, we obtain a vector

(I + A)n−1y > 0.

Since y is arbitrary, it suffices to choose y = ei = [0, . . . , 0, 1, 0, . . . , 0]⊤, to prove that

(I + A)n−1 > 0.

Let A ≥ 0 ∈ Rn×n be irreducible. We define the following quotient

r(x) := min
1≤i≤n
xi ̸=0

[Ax]i
xi

(7.4)

which is clearly nonnegative for every vector x ⪈ 0 ∈ Rn.

Exercise 7.1. Show that for all x ⪈ 0 ∈ Rn, ρx ≤ Ax if and only if ρ ≤ r(x).

For a given x, we have thus that r(x) is the supremum of all ρ ∈ R satisfying

ρx ≤ Ax.

Now, consider the supremum of r(x) for all x. More precisely, define

r = sup
x⪈0

r(x) .

We would like to obtain a vector x for which the supremum is reached. This would be feasible if
r(x) were continuous and {x ⪈ 0 ∈ Rn} were bounded. We first note that (7.4) is invariant under
scaling of x by a positive constant. Hence, we may consider the compact set

M = {x ⪈ 0 ∈ Rn | ∥x∥2 = 1},
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which satisfies
r = sup

x∈M
r(x).

However, r(x) is not continuous onM since (7.4) may present discontinuities when one of the
entries xi approaches zero. Therefore, we define the set

N = {y ∈ Rn | y = (I + A)n−1x, x ∈M}

which is compact and contains only positive vectors. On this set, r(y) is continuous and thus

rN := sup
y∈N

r(y) = max
y∈N

r(y).

Since N ⊆ {x ⪈ 0}, we have that rN ≤ r. On the other hand, observe that for any x ∈M,

r(x)y = r(x)(I + A)n−1x ≤ (I + A)n−1Ax (7.5)

because r(x)x ≤ Ax. Hence, letting y = (I + A)n−1x, (7.5) implies

r(x)y ≤ Ay,

and thus Exercise 7.1 implies r(x) ≤ r(y) ≤ rN . In conclusion, we have

r = max
y∈N

r(y)

and r is reached by a positive vector. Finally, it is clear that r > 0. Indeed, it suffices to observe
that r ≥ r(x) > 0 for any x > 0 since A is irreducible.

Theorem 7.3
Let A ≥ 0 ∈ Rn×n be irreducible and r be as above. Then r is an eigenvalue of A and each
extremal vector x (i.e., every vector x ⪈ 0 ∈ Rn satisfying r(x) = r) is positive and is an
eigenvector of A.

Proof. Let x be an extremal vector. Then Ax ≥ rx (Exercise 7.1). If Ax ̸= rx, then Ax− rx ⪈ 0
so that

(I + A)n−1(Ax− rx) > 0.

Hence,
A(I + A)n−1x > r(I + A)n−1x

which implies, by letting y = (I + A)n−1x,

Ay > ry,

contradicting r = supx r(x). Thus, Ax = rx. Finally, we have

y = (I + A)n−1x = (1 + r)n−1x > 0

implying that
x = (1 + r)1−ny > 0.
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Theorem 7.4: Perron–Frobenius
Let A ≥ 0 ∈ Rn×n be irreducible and r be as above. Then r is the spectral radius of A.
Moreover, r is a simple eigenvalue whose eigenspace is generated by a positive vector.

Proof. Firstly, let λ ∈ C be an eigenvalue of A and z be a corresponding eigenvector:

Az = λz.

Then we have
|λ||z| = |Az| ≤ A|z|. (7.6)

For y = |z| ≥ 0, we can write
|λ| ≤ r(y) ≤ r

so that the spectral radius ρ(A) := maxi |λi| is smaller than or equal to r.
Secondly, for every eigenvector z corresponding to r, we have

Az = rz

and thus
A|z| ≥ r|z|

by a reasoning similar to (7.6). Moreover, |z| > 0 because of the previous theorem, since it is
an extremal vector. Hence, every eigenvector z associated to r cannot have a zero component. If
there is more than one linearly independent eigenvector associated to r, then it is always possible
to obtain, by linear combinations, another eigenvector with a zero component. This contradiction
shows that r is a simple eigenvalue.

The Perron–Frobenius theorem finds applications, e.g., in the study of stochastic matrices

S =


p11 · · · p1n
... ...

pn1 · · · pnn

 ,
n∑
i=1

pij = 1 (7.7)

whose entries pij are respectively the probability of transition from state j to state i. The normal-
ization condition in (7.7) implies

[1, 1, . . . , 1] S = [1, 1, . . . , 1],

so that S has an eigenvalue equal to 1.

Theorem 7.5
If S ≥ 0 ∈ Rn×n is an irreducible stochastic matrix, then ρ(S) = 1 and 1 is a simple eigenvalue.

Proof. It suffices to show that 1 is the largest (in modulus) eigenvalue. Therefore, we note that

∥S∥1 = max
j

∑
i

|pij| = 1,

and the spectral radius ρ(S) is always smaller than or equal to any submultiplicative matrix
norm.
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Exercise 7.2. Show that if |λ2(S)| < ρ(S), then

lim
n→+∞

Sn = x [1, 1, . . . , 1]

where x is the Perron eigenvector of S, normalized such that ∑xi = 1.

This matrix is nonnegative and gives the “stationary” probabilities of transitions corresponding
to the matrix S (see, e.g., [Lancaster and Tismenetsky, 1985]).

Remark 7.1. An irreducible matrix can have other eigenvalues with modulus equal to ρ. A classical
example is the n× n matrix

S =


0 1

0 . . .
. . . 1

1 0

 ,

which is cyclic and stochastic. The eigenvalues and eigenvectors of S are given by

λi = ωi, xi = [1, ωi, ω2
i , . . . , ωn−1

i ]⊤

where ωi is an nth root of unity (i.e., ωni = 1). We observe that

|λi| = 1, |xi| = [1, 1, . . . , 1]⊤.
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Chapter 8

Semigroups of matrices

There are many situations in engineering where one has to build a product of different matrices
(say, sampled from a finite set of given matrices), as for instance in the modelling and analysis
of switched systems (see below). In this case, many of the problems that we have studied in this
course become extremely difficult, and often impossible to solve algorithmically.

Nevertheless, given a particular set of matrices, one can define (and sometimes, actually com-
pute, or approximate) numerical quantities that help to understand the structure of the generated
semigroup (that is, the set of products that one can build from the given set of matrices). These
quantities are called joint spectral characteristics: joint, because they characterize a set of ma-
trices, and spectral, by analogy with the spectral radius, and more precisely its interpretation in
terms of asymptotic behaviour of the powers of a matrix. This chapter constitutes a quick survey
on the joint spectral characteristics. It mainly focuses on one of them: the joint spectral radius.
Some of the results presented in this chapter require rather involved proofs. For this reason, this
chapter is not self-contained. Its goal is to give a glimpse at modern tools in the mathematics of
semigroups of matrices.

Perhaps the most natural way to introduce joint spectral characteristics is through switched
systems. A switched linear system in discrete time is characterized by the equation

xt+1 = Atxt, x0 ∈ Rn, At ∈ Σ, (8.1)

where Σ is a set of real n × n matrices. We would like to estimate the evolution of the vector x,
and more particularly (if it exists) the asymptotic growth rate of its norm:

λ = lim
t→∞
∥xt∥1/t.

Clearly, one cannot expect that this limit would exist in general. Indeed, even in dimension one,
it is easy to design a dynamical system and a trajectory such that the limit above does not exist.
Thus a typical relevant question for such a system is the extremal rate of growth: given a set of
matrices Σ, what is the maximal value for λ over all initial vectors x0 and all sequences of matrices
At? In the case of dynamical systems for instance, such an analysis makes a lot of sense. Indeed,
by computing the maximal growth rate, one can ensure the stability of the system, provided that
this growth rate is less than one. We will see that the quantity characterizing this maximal rate
of growth of a switched linear discrete time system is the joint spectral radius, introduced in 1960
by Rota and Strang [Rota and Strang, 1960]. Because of its interpretation in terms of dynamical
systems, and for many other reasons that we will present later on, it has been widely studied
during the last decades.
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Figure 8.1: Trajectories of two stable matrices

When the set of matrices consists of a single matrix A, the problem is simple: the maximal
growth rate is the largest magnitude of the eigenvalues of A. As a consequence, a matrix is stable
if and only if the magnitudes of its eigenvalues are less than one. However, if the set of matrices
consists in more than just one matrix, the problem is far more complex: the matrices could well
all be stable, while the system itself could be unstable! This phenomenon, which motivates the
study of the joint spectral radius, is illustrated by the next example.

Example 8.1. Consider the set of matrices

Σ =
{

A0 = 2
3

[
cos(1.5) sin(1.5)
−2 sin(1.5) 2 cos(1.5)

]
, A1 = 2

3

[
2 cos(1.5) 2 sin(1.5)
− sin(1.5) cos(1.5)

] }
.

The dynamics of A0 (resp. A1) are illustrated in Figure 8.1 (left) (resp. right), with the initial point
x0 = [1, 1]⊤. Since both matrices are stable (ρ(A0) = ρ(A1) = 0.9428, where ρ(A) is the spectral
radius of A, i.e., is the largest magnitude of its eigenvalues), the trajectories go to the origin. But
if one combines the action of A0 and A1 alternatively, a diverging behavior occurs (Figure 8.2).
The explanation is straightforward: the spectral radius of A0A1 is equal to 1.751 > 1.

In practical applications, some other quantities can be of importance, as for instance the min-
imal rate of growth. This concept corresponds to the notion of joint spectral subradius. In this
chapter we first present precise definitions of the main concepts (Section 8.1). In Section 8.2,
we show that these definitions are well posed, and we present some basic properties on the joint
spectral radius and the joint spectral subradius. Then, we show that these notions are “useful”,
in the sense that they actually characterize the maximal and minimal growth rates of a switched
dynamical system of the type (8.1). As the reader will discover, this is not so obvious.

Some of the results presented in this chapter require rather involved proofs, which we skip.

8.1 Definitions
The joint spectral radius characterizes the maximal asymptotic growth rate of the norms of long
products of matrices taken in a set Σ. All the considered matrix norms in this chapter are assumed
to be submultiplicative, i.e., ∥AB∥ ≤ ∥A∥ ∥B∥ (see also Appendix B).
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Figure 8.2: Unstable behavior by combining two stable matrices

So, let ∥·∥ be a matrix norm, and A ∈ Rn×n be a real matrix. As shown by Gelfand in 1941,
the spectral radius of A, that is, the maximal modulus of its eigenvalues, represents the asymptotic
growth rate of the norm of the successive powers of A:

ρ(A) = lim
t→∞
∥At∥1/t. (8.2)

This quantity does provably not depend on the norm used, and one can see that it characterizes
the maximal rate of growth for the norm of a point xt subject to a linear time-invariant dynamical
system.

In order to generalize Gelfand’s formula (8.2) to a set of matrices Σ ⊆ Rn×n, let us introduce
the following notation:

Σt := {A1 · · ·At | Ai ∈ Σ}.
We define the two following quantities that are good candidates to quantify the maximal norm of
products of length t:

ρ̂t(Σ) := sup {∥A∥1/t | A ∈ Σt},

ρt(Σ) := sup {ρ(A)1/t | A ∈ Σt}.

For a matrix A ∈ Σt, we call ∥A∥1/t and ρ(A)1/t respectively the averaged norm and the averaged
spectral radius of the matrix, in the sense that it is averaged with respect to the length of the
product. Rota and Strang introduced the joint spectral radius as the limit [Rota and Strang, 1960]:

ρ̂(Σ) := lim
t→∞

ρ̂t(Σ).

Using the equivalence of norms in finite-dimensional spaces, it can be shown that this definition
is independent of the norm used in the definition of ρ̂t. Daubechies and Lagarias introduced the
generalized spectral radius as [Daubechies and Lagarias, 1992]:

ρ(Σ) := lim sup
t→∞

ρt(Σ).

It turns out that for bounded sets of matrices these two quantities are equal (see Theorem 8.3
below). Based on this equivalence, we use the following definition:
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Definition 8.1
The joint spectral radius of a bounded set of matrices Σ ⊆ Rn×n is defined by

ρ(Σ) = lim sup
t→∞

ρt(Σ) = lim
t→∞

ρ̂t(Σ).

Example 8.2. Let us consider the following set of matrices:

Σ =
{ [

1 1
0 0

]
,

[
1 0
1 0

] }
.

The spectral radius of both matrices is one. However, by multiplying them, one can obtain the
matrix

A =
[

2 0
0 0

]

whose spectral radius is equal to two. Hence, ρ(Σ) ≥
√

2, since

lim
t→∞

ρ̂t(Σ) ≥ lim
t→∞
∥At/2∥1/t =

√
2.

Now, ρ̂2 =
√

2 (where we have used the spectral norm) and, as we will see below, ρ̂t is an upper
bound on ρ for any t. So we get ρ(Σ) =

√
2.

Let us now interest ourself to the minimal rate of growth. We can still define similar quantities,
describing the minimal rate of growth of the spectral radius and of the norms of products in Σt.
These notions were introduced later than the joint spectral radius [Gurvits, 1995]:

ρ̌t(Σ) := inf {∥A∥1/t | A ∈ Σt},

ρ
t
(Σ) := inf {ρ(A)1/t | A ∈ Σt}.

Then the joint spectral subradius is defined as the limit:

ρ̌(Σ) := lim
t→∞

ρ̌t(Σ)

which is still independent of the norm used in the definition of ρ̌t. We define the generalized spectral
subradius as

ρ(Σ) := lim
t→∞

ρ
t
(Σ)

It turns out that for any sets of matrices (not necessarily bounded) these two quantities are equal
(see Theorem 8.5 below), and we use the following definition:

Definition 8.2
The joint spectral subradius of a set of matrices Σ ⊆ Rn×n is defined by

ρ̌(Σ) = lim
t→∞

ρ̌t = lim
t→∞

ρ
t
.
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Example 8.3. Let us consider the following set of matrices:

Σ =
{ [

2 1
0 0

]
,

[
0 1
0 3

] }
.

The spectral radius of both matrices is greater than one. However, by multiplying them, one can
obtain the zero matrix, and thus the joint spectral subradius is zero.

The above examples are simple but, as the reader will see, the situation is sometimes much
more complex.

8.2 Fundamental theorems

8.2.1 The joint spectral radius theorem
It is well known that the spectral radius of a matrix satisfies ρ(At) = ρ(A)t and satisfies Gelfand’s
formula (8.2). One would like to generalize these relations to “inhomogeneous” products of ma-
trices, that is, products where factors are not all equal to a same matrix A. This is possible, as
proved in 1992 by Berger and Wang [Berger and Wang, 1992] in the so-called Joint Spectral Radius
Theorem:

Theorem 8.3
For any bounded set of matrices Σ ⊆ Rn×n, the values ρ̂(Σ) and ρ(Σ) are equal

Proof. We refer the reader to [Jungers, 2009, Theorem 2.3].

Observe that the joint spectral radius theorem cannot be generalized to unbounded sets of
matrices, as can be seen with the following example:

Example 8.4. Let us consider the following set of matrices:

Σ =
{ [

1 1
0 1

]
,

[
1 2
0 1

]
, . . .

}
.

For this set, we have ρ(Σ) = 1, while ρ̂(Σ) =∞.

8.2.2 The joint spectral subradius theorem
Let us now consider the joint spectral subradius. It appears that now both ρ

t
and ρ̌t converge:

Proposition 8.4
For any set Σ ⊆ Rn×n, the sequence ρ̌t(Σ) converges when t→∞, and

lim
t→∞

ρ̌t(Σ) = inf
t>0

ρ̌t(Σ).

Moreover, the sequence ρ
t
(Σ) converges when t→∞, and

lim
t→∞

ρ
t
(Σ) = inf

t>0
ρ
t
(Σ).
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Proof. We refer the reader to [Jungers, 2009, Proposition 1.1].

We also have the equality between ρ̌ and ρ. Moreover in this case the set need not be bounded:

Theorem 8.5
For any set of matrices Σ ⊆ Rn×n,

lim
t→∞

inf {ρ(A)1/t | A ∈ Σt} = lim
t→∞

inf {∥A∥1/t | A ∈ Σt} =: ρ̌(Σ).

Proof. Clearly,
lim
t→∞

inf {ρ(A)1/t | A ∈ Σt} ≤ lim
t→∞

inf {∥A∥1/t | A ∈ Σt}

because for any matrix A, ρ(A) ≤ ∥A∥.
Now, for ε > 0, let A ∈ Σt with averaged spectral radius r ≤ ρ(Σ) + ε. Then the product

Ak ∈ Σkt is such that ∥Ak∥1/kt → r as k →∞ (Gelfand’s formula), so that

lim
t→∞

inf {∥A∥1/kt | A ∈ Σkt} ≤ r ≤ ρ(Σ) + ε.

Since ε > 0 is arbitrary, this concludes the proof.

For the sake of completeness, and because it is worth to keep in mind that many problems be-
come very hard when dealing with semigroups of matrices, we briefly cite one classical infeasibility
result on the joint spectral subradius. It is based on a famous result by Paterson [Paterson, 1970]
on the mortality problem. In this problem, one is given a set of matrices Σ, and it is asked whether
there exists a product of matrices in Σ∗ = ⋃

t≥1 Σt that is equal to zero.

Theorem 8.6
The mortality problem is undecidable. This is true even for sets of 2(np + 1) matrices with
dimensions 3 × 3, where np is any number for which Post’s correspondence problem is unde-
cidable.

Corollary 8.7
The mortality problem is undecidable for sets of 16 matrices with dimensions 3× 3.

Proof. Matiyasevitch and Sénizergues have shown that Post’s correspondence problem is undecid-
able even for 7 pairs of words [Matiyasevich and Senizergues, 1996].

From this, one can easily show that computing the joint spectral subradius, or more precisely,
deciding whether the joint spectral subradius of a set of matrices is zero is undecidable.

8.2.3 Other basic properties
The proofs in this subsection are elementary applications of concepts previously seen in this course,
and we leave them as an exercise.
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Invariance properties

Proposition 8.8: Scaling invariance
For any set Σ ⊆ Rn×n and any α ∈ R,

ρ̂(αΣ) = |α|ρ̂(Σ),

ρ(αΣ) = |α|ρ(Σ),

ρ̌(αΣ) = |α|ρ̌(Σ),

ρ(αΣ) = |α|ρ(Σ).

Proposition 8.9: Invariance under similarity
For any set Σ ⊆ Rn×n and any invertible matrix T ∈ Rn×n,

ρ̂(Σ) = ρ̂(TΣT −1),

ρ(Σ) = ρ(TΣT −1),

ρ̌(Σ) = ρ̌(TΣT −1),

ρ(Σ) = ρ(TΣT −1).

Common reducibility

We will say that a set of matrices is commonly reducible (or simply reducible) if there is a non-
trivial linear subspace (i.e., different from {0} and Rn) that is invariant under all matrices in Σ.
This property is equivalent to the existence of an invertible matrix T that block-triangularizes
simultaneously all matrices in Σ:

Definition 8.10
The set Σ ⊆ Rn×n is reducible if and only if there exists an invertible matrix T ∈ Rn×n and
an integer 0 < n′ < n such that for every Ai ∈ Σ,

TAiT
−1 =

[
Bi Ci

0 Di

]

where Di ∈ Rn′×n′ .

We will say that a set of matrices is commonly irreducible (or simply irreducible), if it is not
commonly reducible.
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Proposition 8.11
With the notations of Definition 8.10, if Σ ⊆ Rn×n is bounded and reducible, then

ρ(Σ) = max {ρ({Bi}), ρ({Di})},

ρ̌(Σ) ≥ max {ρ̌({Bi}), ρ̌({Di})}.

Three members inequalities

Proposition 8.12
For any set Σ ⊆ Rn×n and any t ∈ Z>0,

ρt(Σ) ≤ ρ(Σ) ≤ ρ̂(Σ) ≤ ρ̂t(Σ).

If Σ is bounded, then the central inequality is an equality, ρ(Σ) = ρ̂(Σ) (Theorem 8.3).

For the joint spectral subradius, it appears that both quantities ρ
t

and ρ̌t are in fact upper
bounds:

Proposition 8.13
For any set Σ ⊆ Rn×n and any t ∈ Z>0,

ρ̌(Σ) ≤ ρ
t
(Σ) ≤ ρ̌t(Σ).

8.3 Stability of dynamical systems
As explained in the introduction, one possible use of the joint spectral radius is to characterize the
maximal asymptotic behavior of a dynamical system. But is this exactly what we are doing, when
we compute a joint spectral radius? The notion of stability of a dynamical system, like the system
defined in (8.1), is somewhat fuzzy in the literature, and many different (and not equivalent)
definitions appear. According to the natural intuition, and to the most commonly-used definition,
we introduce the next definition:

Definition 8.14
A switched dynamical system (8.1) is stable if for any initial condition x0 ∈ Rn, and any
sequence of matrices {At} ⊆ Σ, limt→∞ xt = 0.

Clearly, if ρ̂(Σ) < 1, then the dynamical system is stable, because xt = Ax0, with A ∈ Σt, and
so |xt| ≤ ∥A∥ |x0| ≤ ρ̂t(Σ)t|x0| → 0.

But the converse statement is less obvious: could the condition ρ̂ < 1 be too strong for stability?
Could it be that for any length, one is able to provide a product of this length that is not too
small, but yet that any actual trajectory, defined by an infinite sequence of matrices, is bound to
tend to zero? The next example shows that such a case appears with unbounded sets:
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Example 8.5. Let

Σ =
{

A = 1
2

[
1 0
0 1

] }
∪
{

Bk =
[

0 k
0 0

]
, k ∈ N

}
.

For any length t, ρ̂t = ∞, but one can check easily that every infinite product tends to zero. To
see this, observe that a left-infinite product has one of these forms, each of which tends to zero

∥· · ·AA∥ ≈ (1/2)t,

∥· · ·A · · ·ABkA∥ ≈ k(1/2)t−1,

∥· · ·A · · ·ABkA · · ·ABℓA∥ = 0.

The following theorem [Berger and Wang, 1992] ensures that such a pathological situation does
not appear with bounded sets:

Theorem 8.15
For any bounded set of matrices Σ ⊆ Rn×n, there exists a left-infinite product · · ·A2A1 that
does not converge to zero if and only if ρ(Σ) ≥ 1.

Proof. The proof of this theorem is not trivial. The reader will find a proof of this important result
in [Jungers, 2009, Section 2.1].

This proves that the joint spectral radius rules the stability of dynamical systems:

Corollary 8.16
For any bounded set of matrices Σ ⊆ Rn×n, the corresponding switched dynamical system
(8.1) is stable if and only if ρ(Σ) < 1.

In Theorem 8.15 and in Corollary 8.16, the boundedness assumption cannot be removed, as
shown by Example 8.5.

The equivalent problem for the joint spectral subradius is obvious: for any bounded set of
matrices Σ, the corresponding switched dynamical system (8.1) is stabilizable, i.e., there exists an
infinite product of matrices whose norm tends to zero, if and only if ρ̌(Σ) < 1. Indeed, if ρ̌ < 1,
there exists a real γ, and a finite product A ∈ Σt such that ∥A∥ ≤ γ < 1, and thus limk→∞ Ak = 0.
On the other hand, if ρ̌ ≥ 1, then for all A ∈ Σt, ∥A∥ ≥ 1 because ρ̌t(Σ) ≥ ρ̌(Σ) (Proposition 8.13),
and so no long product of matrices tends to zero. There is however a nontrivial counterpart to
Corollary 8.16. To see this, let us rephrase Theorem 8.15 in the following corollary:

Corollary 8.17
For any bounded set of matrices Σ ⊆ Rn×n, there is an infinite product of these matrices
reaching the joint spectral radius. More precisely, there is a sequence of matrices A0, A1, . . .
in Σ such that

lim
t→∞
∥At · · ·A1∥1/t = ρ(Σ).

The counterpart for the joint spectral subradius is the following result:
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Corollary 8.18
For any (even unbounded) set of matrices Σ ⊆ Rn×n, there is an infinite product of these
matrices reaching the joint spectral subradius. More precisely, there is a sequence of matrices
A0, A1, . . . in Σ such that

lim
t→∞
∥At · · ·A1∥1/t = ρ̌(Σ).

8.4 Other joint spectral characteristics
While the joint spectral radius and subradius can easily be understood as a natural control theo-
retical quantity, other quantities can be defined to further describe semigroups of matrices. Such
a quantity, often called the p-radius, has motivations in functional analysis. See, e.g., [Jia, 1995]
for early work on the topic. It considers the average norm over all the products of length t:

ρp(Σ) = lim
t→∞

 1
mt

∑
A∈Σt

∥A∥p
1/(pt)

.

The next quantity also considers the asymptotic evolution of some average norm among all the
products of length t, but here, the geometric average is taken:

ρ̄(Σ) = lim
t→∞

 ∏
A∈Σt

∥A∥

1/(tmt)

.

In control, we often call it the Lyapunov exponent of the system (8.1) referring implicitly to a
system where (equal) probabilities are appended to each matrix in the set, so that at each time
step, one matrix is sampled from the set according to the probabilities. In this context, the
Lyapunov exponent provides the rate of growth of the switching system with probability one. See
[Pollicott, 2010] for a more formal statement of this result and recent computational approaches.

Finally, the last quantity that is also concerned with the smallest possible rate of growth, but
now it is assumed that at every step t, one can choose the matrix depending on the present value
of xt. (This last joint spectral quantity is thus smaller than the subradius.) It has only been
introduced formally recently [Jungers and Mason, 2017], but the reader can find earlier implicit
studies of it in the literature. The stabilizability radius is defined as follows:

ρ̃(Σ) = sup
x0∈Rn

[
inf {λ ∈ R | ∃ {t0, t1, . . .}, ∃M > 0 : ∀t ≥ 0, |xt| ≤Mλt|x(t)|}

]
.

8.5 Conclusion
The goal of this chapter was to understand properly the notions of joint spectral characteristics in
a glance, and provide a window on problems arising in the theory of matrix semigroups. Needless
to say, this theory of matrix semigroups goes way beyond joint spectral characteristics.

We have limited ourself to joint spectral characteristics for which, as the reader has seen,
even some basic facts, such as the equivalence between the joint and generalized spectral radii,
require some advanced results. The study of matrix semigroups, and in particular joint spectral
characteristics, is still the subject of active research in the mathematics and control community.



Appendix A

Algebraic structures

� A semigroup is a set together with an associative binary operation.

� A monoid is a semigroup with a neutral element.

� A group is a monoid in which every element has an inverse.

� A commutative (or abelian) group is a group whose binary operation is commutative.

When a set has two associative binary operations, they are commonly denoted by + (addition)
and · (multiplication).

� A ring is a triple (E, +, ·) such that

– (E, +) is a commutative group;
– (E, ·) is a monoid;
– · is distributive with respect to +.

Examples: Z, R[z] (polynomials of the variable z with real coefficients).

In a ring, the neutral for the addition is denoted by 0 and the neutral for the multiplication is
denoted by 1.

� A ring (E, +, ·) is commutative if (E, ·) is commutative.

� An integral domain is a commutative ring in which the product of any two nonzero elements
is nonzero. This implies that the equation ax = b with a ̸= 0 has at most one solution.

� A Euclidean domain is an integral domain such that for every two elements in the domain,
we can perform the Euclidean division:

∀a1, a2, ∃q, r s.t. a1 = a2q + r with r < a2.

� A field is a commutative ring (E, +, ·) such that every a ∈ E \ {0} has a multiplicative
inverse.

Examples: Q, R, C.
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We may also defined structures on pairs of sets K and E equipped with an external composition
operation K × E → E, also denoted by · .

� We say that (K, E, +) is a module over the ring (K, +, ·) if

– (E, +) is a commutative group;
– the external composition operation · : K × E → E satisfies

(a + b) · x = a · x + b · x (mixed distributivity),
a · (x + y) = a · x + a · y (distributivity),
a · (b · x) = (a · b) · x (mixed associativity),
1 · x = x (common neutral element).

(A.1)

Examples: Rn[z], Cn[z].

� If, on top of this, (K, +, ·) is a field, we say that (K, E, +) is a vector space over (K, +, ·).

Examples: Rn, Cn.

We may define an internal composition operation E × E → E that we denote by · again.

� We say that (K, E, +, ·) is an algebra if

– (K, E, +) is a module or a vector space;
– the internal composition operation · : E × E → E is bilinear.

Examples: the square matrices with elements in a field or a ring, e.g., Rn×n, Cn×n, Rn×n[z],
Cn×n[z].



Appendix B

Norms

A vector norm is a function ∥·∥ : Cn → R satisfying the following properties:

• ∥x∥ ≥ 0,

• ∥x∥ = 0 ⇐⇒ x = 0,

• ∥αx∥ = |α| ∥x∥ ∀α ∈ C, ∀x ∈ Cn,

• ∥x + y∥ ≤ ∥x∥+ ∥y∥ ∀x, y ∈ Cn.

The most commonly used norms are

∥x∥1 =
n∑
i=1
|xi|,

∥x∥2 =
(

n∑
i=1
|xi|2

)1/2

= (x∗x)1/2 ,

∥x∥∞ = max
1≤i≤n

|xi|,

which are particular cases of the p-norm:

∥x∥p =
(

n∑
i=1
|xi|p

)1/p

, p ≥ 1.

Among the vector norms, we often consider the norm ∥·∥2 because it is derivable (its gradient
is equal to x/∥x∥2) and is unitarily invariant: ∥Ux∥2 = ∥x∥2 for every unitary matrix U (i.e.,
every matrix satisfying U∗U = UU∗ = In).

A matrix norm is a function ∥·∥ : Cm×n → R which satisfies the same properties as a vector
norm. The most frequently used matrix norms are the following:

• The Frobenius norm:

∥A∥F =
 m∑
i=1

n∑
j=1
|ai,j|2

1/2

=
[
trace(A∗A)

]1/2
,
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• The matrix norms induced by a vector norm (aka. operator norms):

∥A∥p = max
x ̸=0

∥Ax∥p
∥x∥p

, p = 1, 2,∞.

We can show [Horn and Johnson, 1990] that

∥A∥1 = max
1≤j≤n

m∑
i=1
|ai,j|,

∥A∥∞ = max
1≤i≤m

n∑
j=1
|ai,j|,

∥A∥2 =
[
λmax(A∗A)

]1/2
= σmax(A), (spectral norm).

A matrix norm ∥·∥ is submultiplicative if ∥AB∥ ≤ ∥A∥∥B∥ for every matrices A and B for
which the product makes sense and the norms of A, B and AB are well defined. The above norms
are all submultiplicative.

A matrix norm is unitarily invariant if ∥M∥ = ∥UMV ∥ for every unitary matrices U (i.e.,
U∗U = UU∗ = Im) and V (i.e., V ∗V = V V ∗ = In). Among the above norms, only ∥·∥2 and ∥·∥F
are unitarily invariant. This is why they are used so often.
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